main page
modules
namespaces
classes
files
Gecode home
Generated on Wed Jan 1 2020 10:37:59 for Gecode by
doxygen
1.8.16
gecode
set
rel-op-const-vcv.cpp
Go to the documentation of this file.
1
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
2
/*
3
* Main authors:
4
* Guido Tack <tack@gecode.org>
5
*
6
* Contributing authors:
7
* Gabor Szokoli <szokoli@gecode.org>
8
*
9
* Copyright:
10
* Guido Tack, 2004, 2005
11
*
12
* This file is part of Gecode, the generic constraint
13
* development environment:
14
* http://www.gecode.org
15
*
16
* Permission is hereby granted, free of charge, to any person obtaining
17
* a copy of this software and associated documentation files (the
18
* "Software"), to deal in the Software without restriction, including
19
* without limitation the rights to use, copy, modify, merge, publish,
20
* distribute, sublicense, and/or sell copies of the Software, and to
21
* permit persons to whom the Software is furnished to do so, subject to
22
* the following conditions:
23
*
24
* The above copyright notice and this permission notice shall be
25
* included in all copies or substantial portions of the Software.
26
*
27
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
28
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
29
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
30
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
31
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
32
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
33
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
34
*
35
*/
36
37
#include <
gecode/set.hh
>
38
#include <
gecode/set/rel.hh
>
39
#include <
gecode/set/rel-op.hh
>
40
41
namespace
Gecode
{
42
using namespace
Gecode::Set
;
43
using namespace
Gecode::Set::Rel
;
44
using namespace
Gecode::Set::RelOp
;
45
46
void
47
rel
(
Home
home,
SetVar
x
,
SetOpType
op
,
const
IntSet
&
y
,
SetRelType
r
,
48
SetVar
z
) {
49
Set::Limits::check
(
y
,
"Set::rel"
);
50
ConstSetView
yv(home,
y
);
51
52
if
(
op
==
SOT_MINUS
) {
53
switch
(
r
) {
54
case
SRT_EQ
:
55
{
56
GlbRanges<ConstSetView>
yr(yv);
57
RangesCompl<GlbRanges<ConstSetView>
> yrc(yr);
58
IntSet
yc(yrc);
59
ConstSetView
cy(home, yc);
60
GECODE_ES_FAIL
(
61
(
Intersection
<
ConstSetView
,
62
SetView
,
SetView
>
63
::
post
(home,cy,
x
,
z
)));
64
}
65
break
;
66
case
SRT_LQ
:
case
SRT_LE
:
case
SRT_GQ
:
case
SRT_GR
:
67
{
68
GlbRanges<ConstSetView>
yr(yv);
69
RangesCompl<GlbRanges<ConstSetView>
> yrc(yr);
70
IntSet
yc(yrc);
71
ConstSetView
cy(home, yc);
72
SetVar
tmp(home,
IntSet::empty
,
Set::Limits::min
,
Set::Limits::max
);
73
GECODE_ES_FAIL
(
74
(
Intersection
<
ConstSetView
,
75
SetView
,
SetView
>
76
::
post
(home,cy,
x
,tmp)));
77
rel
(home,tmp,
r
,
z
);
78
}
79
break
;
80
case
SRT_NQ
:
81
{
82
SetVar
tmp(home);
83
GECODE_ES_FAIL
(
84
(
Distinct<SetView,SetView>
85
::
post
(home,
z
,tmp)));
86
GlbRanges<ConstSetView>
yr(yv);
87
RangesCompl<GlbRanges<ConstSetView>
> yrc(yr);
88
IntSet
yc(yrc);
89
ConstSetView
cy(home, yc);
90
GECODE_ES_FAIL
(
91
(
Intersection
<
ConstSetView
,
92
SetView
,
SetView
>
93
::
post
(home,cy,
x
,tmp)));
94
}
95
break
;
96
case
SRT_SUB
:
97
{
98
GlbRanges<ConstSetView>
yr(yv);
99
RangesCompl<GlbRanges<ConstSetView>
> yrc(yr);
100
IntSet
yc(yrc);
101
ConstSetView
cy(home, yc);
102
GECODE_ES_FAIL
(
103
(
SuperOfInter<ConstSetView,SetView,SetView>
104
::
post
(home,cy,
x
,
z
)));
105
106
}
107
break
;
108
case
SRT_SUP
:
109
{
110
SetVar
tmp(home);
111
GECODE_ES_FAIL
(
112
(
Subset<SetView,SetView>::post
(home,
z
,tmp)));
113
114
GlbRanges<ConstSetView>
yr(yv);
115
RangesCompl<GlbRanges<ConstSetView>
> yrc(yr);
116
IntSet
yc(yrc);
117
ConstSetView
cy(home, yc);
118
119
SetView
xv(
x
);
120
GECODE_ES_FAIL
(
121
(
Intersection
<
ConstSetView
,
122
SetView
,
SetView
>
123
::
post
(home,cy,xv,tmp)));
124
}
125
break
;
126
case
SRT_DISJ
:
127
{
128
SetVar
tmp(home);
129
EmptyView
emptyset;
130
GECODE_ES_FAIL
((
SuperOfInter<SetView,SetView,EmptyView>
131
::
post
(home,
z
, tmp, emptyset)));
132
133
GlbRanges<ConstSetView>
yr(yv);
134
RangesCompl<GlbRanges<ConstSetView>
> yrc(yr);
135
IntSet
yc(yrc);
136
ConstSetView
cy(home, yc);
137
GECODE_ES_FAIL
(
138
(
Intersection
<
ConstSetView
,
139
SetView
,
SetView
>
140
::
post
(home,cy,
x
,tmp)));
141
}
142
break
;
143
case
SRT_CMPL
:
144
{
145
SetView
xv(
x
);
146
ComplementView<SetView>
cx(xv);
147
GECODE_ES_FAIL
(
148
(
Union
<
ConstSetView
,
149
ComplementView<SetView>
,
150
SetView
>::
post
(home, yv, cx,
z
)));
151
}
152
break
;
153
default
:
154
throw
UnknownRelation
(
"Set::rel"
);
155
}
156
}
else
{
157
rel
(home,
y
,
op
,
x
,
r
,
z
);
158
}
159
}
160
}
161
162
// STATISTICS: set-post
Gecode::x
Post propagator for SetVar x
Definition:
set.hh:767
Gecode::Set::RelOp::Union
Propagator for ternary union
Definition:
rel-op.hh:152
Gecode::y
Post propagator for SetVar SetOpType SetVar y
Definition:
set.hh:767
Gecode::Set::GlbRanges< ConstSetView >
Range iterator for greatest lower bound of constant set view
Definition:
const.hpp:664
GECODE_ES_FAIL
#define GECODE_ES_FAIL(es)
Check whether execution status es is failed, and fail space home.
Definition:
macros.hpp:103
Gecode::Set::ConstSetView
Constant view.
Definition:
view.hpp:186
Gecode::IntSet::empty
static const IntSet empty
Empty set.
Definition:
int.hh:283
Gecode::Set::Limits::min
const int min
Smallest allowed integer in integer set.
Definition:
set.hh:99
Gecode::z
Post propagator for SetVar SetOpType SetVar SetRelType SetVar z
Definition:
set.hh:767
Gecode::Set::Rel
Standard set relation propagators.
Definition:
common.hpp:53
Gecode::SRT_LQ
Less or equal ( )
Definition:
set.hh:650
Gecode::SetOpType
SetOpType
Common operations for sets.
Definition:
set.hh:660
Gecode::Set::RelOp
Standard set operation propagators.
Definition:
common.hpp:76
Gecode::SRT_GQ
Greater or equal ( )
Definition:
set.hh:652
Gecode::SRT_SUB
Subset ( )
Definition:
set.hh:646
Gecode::Set::Rel::Subset
Propagator for the subset constraint
Definition:
rel.hh:64
Gecode::SRT_SUP
Superset ( )
Definition:
set.hh:647
rel.hh
Gecode::SRT_DISJ
Disjoint ( )
Definition:
set.hh:648
Gecode
Gecode toplevel namespace
Gecode::IntSet
Integer sets.
Definition:
int.hh:174
Gecode::Set::Limits::max
const int max
Largest allowed integer in integer set.
Definition:
set.hh:97
Gecode::Set::RangesCompl
A complement iterator spezialized for the BndSet limits.
Definition:
var-imp.hpp:292
Gecode::SRT_EQ
Equality ( )
Definition:
set.hh:644
Gecode::Set::RelOp::Intersection
Propagator for ternary intersection
Definition:
rel-op.hh:122
Gecode::Set::EmptyView
Constant view for the empty set.
Definition:
view.hpp:336
Gecode::Home
Home class for posting propagators
Definition:
core.hpp:856
Gecode::r
Post propagator for SetVar SetOpType SetVar SetRelType r
Definition:
set.hh:767
Gecode::post
TFE post(PropagatorGroup g)
Only post functions (but not propagators) from g are considered.
Definition:
filter.cpp:138
Gecode::SetVar
Set variables
Definition:
set.hh:127
rel-op.hh
Gecode::SetRelType
SetRelType
Common relation types for sets.
Definition:
set.hh:643
Gecode::SRT_LE
Less ( )
Definition:
set.hh:651
Gecode::SRT_GR
Greater ( )
Definition:
set.hh:653
Gecode::SRT_NQ
Disequality ( )
Definition:
set.hh:645
Gecode::SRT_CMPL
Complement.
Definition:
set.hh:649
Gecode::rel
void rel(Home home, FloatVar x0, FloatRelType frt, FloatVal n)
Propagates .
Definition:
rel.cpp:43
Gecode::Set::Rel::Distinct
Propagator for negated equality
Definition:
rel.hh:267
Gecode::Set::SetView
Set view for set variables
Definition:
view.hpp:56
Gecode::Set::Limits::check
void check(int n, const char *l)
Check whether integer n is in range, otherwise throw overflow exception with information l.
Definition:
limits.hpp:37
set.hh
Gecode::op
Post propagator for SetVar SetOpType op
Definition:
set.hh:767
Gecode::Set::RelOp::SuperOfInter
Propagator for the superset of intersection
Definition:
rel-op.hh:61
Gecode::Int::UnknownRelation
Exception: Unknown relation passed as argument
Definition:
exception.hpp:87
Gecode::Set::ComplementView
Complement set view.
Definition:
view.hpp:769
Gecode::SOT_MINUS
Difference.
Definition:
set.hh:664
Gecode::Set
Finite integer sets.
Definition:
var-imp.hpp:137