LilyPond

The music typesetter

Contributor’s Guide

The LilyPond development team

()
This manual documents contributing to LilyPond version 2.19.83. It discusses technical issues

and policies that contributors should follow.

This manual is not intended to be read sequentially; new contributors should only read the
sections which are relevant to them. For more information about different jobs, see Section

“Help us” in Contributor’s Guide.
N J

For more information about how this manual fits with the other documentation, or to read this
manual in other formats, see Section “Manuals” in General Information.

If you are missing any manuals, the complete documentation can be found at
http://1lilypond.org/.

Copyright (©) 2007-2015 by the authors.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

For LilyPond version 2.19.83

http://lilypond.org/

Table of Contents

1 Introduction to contributing 1
1.l HelD US o e 1
1.2 Overview of work flow 2
1.3 Summary for experienced developerst 2
14 MENBOTS - ..ttt ettt e 3

2 Quick start........ ... 5
2.1 LAy ev. oo 5

Installing LilyDev in VirtualBoxco i e e 5
Configuring LilyDev in VirtualBox oo i 6
2.2 ly-git o oo 7
Where to get Llily-git 7
Using lily-git to download the source code........ ..., 7
How to use Lily-git 8
2.8 GGl e 9
Installing git=Cl ...t 10
Updating git=cl ...ttt e e 10
Configuring Git—Clttt ettt e e 10
2.4 Compiling with LilyDevo 12
2.5 Now start Work!o 13

3 Working with source code.................................... 14
3.1 Manually installing lily-git.tcl. ... 14
3.2 Starting with Git 14

3.2 ST U vttt ettt e 15
Installing Git 15
Initializing a repository e 15
Configuring Git. 15

3.2.2 Git for the impatient. i 16

3.2.3 Other repositOries. ... ottt e 19
HLypond-eXtra . .« oot 20
Grand Unified Builder (GUB)...... ..o 20
LilyPad. . oo 20
Vet MOTe TEPOSITOTIES . . . oottt e 21

3.2.4 Downloading remote branches............ 21
Organization of remote branches i i 21
LilyPond repository sources.o 21
Downloading individual branches........ i i i 21
Downloading all remote branches i 22
Other branches e e 22

3.3 Basic Git ProCedUTES.ttt ettt e e e e 23

3.3.1 The Git contributor’s cycle. 23

3.3.2 Pulling and rebasing 23

3.3.3 Using local branches e 24
Creating and removing brancheso i 24
Listing branches and remotes i i 24

Checking out branches. 24

Merging branches. ... e 25

3.3:4 COMIMITS. . o oottt 25
Understanding commits.o i 25

How to make a commit e 25
ComMMIt MESSAZES . « « « vttt ettt e e et 26

3.3.0 Patches 26
How to make a patch 26
Emailing patches i 27

3.3.6 Uploading a patch for review 27
3.3.7 The patch review cycle. ... i 29
3.4 Advanced Git ProCeduresiueutit et e 30
3.4.1 Merge conflicts. . ..ot 30
3.4.2 Advanced Git CONCEPES. . .ttt ittt ettt e e e 30
3.4.3 Resolving conflicts 31
3.4.4 Reverting all local changes......... ... i i 31
3.4.5 Working with remote branches........... 31
346 Git log. ..t 32
3.4.7 Applying remote patCches.o 32
3.4.8 Cleaning up multiple patches....... i 33
3.4.9 COomIMIt ACCESS . ..\ vttt t et e 33
3.4.10 Pushing to stagingoouiiiii i 36
3.5 Git 0N WINAOWS . . . oottt et e e e 37
3.5.1 Background to nomenclature.......... 37
3.5.2 Installing git.o 37
3.5.3 Imitialising Git e 37
3.5.4 Git GUI .o 38
3.5.5 Personalising your local git repository 38
3.5.6 Checking out a branch 39
3.5.7 Updating files from ‘remote/origin/master’.........., 39
3.5.8 Editing filles. 39
3.5.9 Sending changes to ‘remotes/origin/master’ o 40
3.5.10 Resolving merge conflicts ... 40
3.5. 11 Other actionst e 40
3.6 Repository directory structureo e 41
3.7 Other Git documentation i e 43
4 Compiling 44
4.1 Overview of compiling 44
4.2 ReqUITEIMENESottt ettt e e e e e e e 44
4.2.1 Requirements for running LilyPond 44
4.2.2 Requirements for compiling LilyPond.......... o o i 45
Fedora. ..o 45
Linux Mint 46
OpenSUSE .. 46
UDUNEU . ettt e 47
OteT 48

4.2.3 Requirements for building documentation i, 48
4.3 Getting the SOUTce Code.ot 49
4.4 Configuring MaKettt 50
4.4.1 Running ./autogen.sh........o.uuinuiitiit i 50
4.4.2 Running ../configure....... ...ttt 50
Configuration OptIONSttt e 50
Checking build dependencies.t 50

Configuring target directoriesot 51

4.5 Compiling LilyPondo 51
4.5. 1 USING MaKe . ..ottt e 51
4.5.2 Saving time with the —j option......... i 52
4.5.3 Compiling for multiple platforms...... 52
4.5.4 Useful make variables 52

4.6 Post-compilation options. e 52
4.6.1 Installing LilyPond from a local build o i 52
4.6.2 Generating documentationt 53

Documentation editor’s edit/compile cycleoo i 53
Building documentation e 53
Building a single document e 54
Saving time with CPU_COUNTttt ettt et e e e 54
ATAX SEATCH . . oot 54
Installing documentation. i 55
Building documentation without compiling.............. o L 95
4.6.3 Testing LilyPond binaryo 56

4.7 Problems . ..o 56
Compiling on MacOS X . ..o e e 56
SOLaTIS . et e Y
FreeB S D . .o e o7
International fonts 57
Using lilypond python libraries.o i 57

4.8 Concurrent stable and development versions.............. ... i, 57

4.9 Build system 58

Documentation work 59

5.1 Introduction to documentation work i 59

5.2 \version in documentation files i 59

5.3 Documentation SUZEEStIONSc.uuttii i 60

5.4 Texinfo introduction and usage policyo 61
5.4.1 Texinfo introduction 61
5.4.2 Documentation files........ ... 61
5.4.3 Sectioning commandsunut it 62
5.4.4 LilyPond formattingo 63
5.4.5 Text formatting. e 65
D.4.6 SYNEAX SUTVEY . .« vttt ettt ettt et et e e e e e e e 65

COMIMENES . ettt e et e e e e 65
Cross TefEreNCeS . .. oottt 66
External links 66
Fixed-width font. 66
Indexingo 67
LSS e 68
Special characters.o o 68
Miscellanyo oo e 69
5.4.7 Other teXt CONCEINIS\ttt e e 69

5.5 Documentation POLiCYttt e 69
0.5 1 BOOKS ..o 69
5.5.2 Section organizationeou it 70
5.5.3 Checking cross-references.o 72
5.5.4 General Writingttt e 72
5.5.5 Technical writing style 72

5.6 Tips for WIiting dOCS.ottt e e 73

5.7 Scripts to ease doC WOTKot 74

5.7.1 Scripts to test the documentation i, 74

Building only one section of the documentationcccviiiaon... 74

5.7.2 Scripts to create documentation................. i 74
Stripping whitespace and generating menusooiiiiiiiiiiiiia.. 74
Stripping whitespace only 75
Updating doc with convert=1yot 75

5.8 Docstrings in scheme e 75
5.9 Translating the documentation.......... .. . i 75
5.9.1 Getting started with documentation translation 75
Translation requirements.t 75
Which documentation can be translated............ L 75
Starting translation in a new language i i 76

5.9.2 Documentation translation details.......... 76
Files to be translated 76
Translating the Web site and other Texinfo documentation....................... 78
Adding a Texinfo manual 80

5.9.3 Documentation translation maintenance............. ... i, 80
Check state of translation. i e 80
Updating documentation translation i, 81
Updating translation committishes.......... i i i 82

5.9.4 Translations management policieso 82
Maintaining without updating translations........... o oL 83
Managing documentation translation with Git............ 84

5.9.5 Technical background 85

6 Website work....... ... 86
6.1 Introduction to website work........ ..o i 86
6.2 Uploading and SECUTItYottt e e 86
6.3 Debugging website and docs locally i 89
6.4 Translating the website 89
T LSR work. 91
7.1 Introduction to LSR o 91
7.2 Adding and editing SNIPPELS\ttt 91
7.3 ADPDProving SIiPPetsot 92
Td LSRR 10 Gito e e e 92
7.5 Fixing snippets in LilyPond sources.......... ... i 93
7.6 Renaming a Snippet. e 94
7.7 Updating the LSR to @ new versiono, 94
B ISSUES ..o 97
8.1 Introduction t0 ISSUES.ot 97
8.2 The Bug Squado e 97
8.2.1 Bug Squad Setup.ttt 97
8.2.2 Bug Squad checklists. ... 98
8.3 Issue classification i 100
8.4 Adding issues to the tracker 102
8.5 Patch handling 103
8.6 Summary of project status.o 103

9 Regression tests......... 105
9.1 Introduction to regression teStsot e 105
9.2 Precompiled regression tests e 105
9.3 Compiling regression tests e 106
9.4 Regtest comparison 107
9.5 Pixel-based regtest compariSon.o 108
9.6 Finding the cause of a regression. 108
9.7 Memory and coverage testsot e 109
9.8 MusicXMEIL testS . . oo ot 110

10 Programming work.................. ... 111
10.1 Overview of LilyPond architecture i i 111
10.2 LilyPond programming languages.............ooiuiiiiniiiiiiiiieannn.. 113

10,2, b et 113
10.2.2 FleX ettt 113
10.2.3 GINU BiSOM. .. e vttt 113
10.2.4 GINU MakKe . . oottt e e e 113
10.2.5 GUILE or Scheme o e 113
10.2.6 MetaFont 113
10.2.7 PoOstSCript . .o oot 113
10.2.8 Pythomn 114
10.2.9 Scalable Vector Graphics (SVG) ... 114
10.3 Programming without compiling............ . i i 114
10.3.1 Modifying distribution files 114
10.3.2 Desired file formattingo 114
10.4 Finding functions. it 114
10.4.1 Using the ROADMARP . ..o e 115
10.4.2 Using grep to search....... ... 115
10.4.3 Using git grep to search...... ... i 115
10.4.4 Searching on the git repository at Savannah............. 115
10.5 Code Style . .ot 115
10.5.1 LangUAZES e ettt e 115
10.5.2 Filenamesttt e e 115
10.5.3 Indentation. e 116
10.5.4 Naming Conventions.oouuuetimtttt i 118
10.5.5 Broken code. ... 118
10.5.6 Code COMMENTS.ottt ettt et e et et e et 118
10.5.7 Handling errorsottt 118
10.5.8 Localization e 119
10.6 Warnings, Errors, Progress and Debug Output............. oot 120
Available log levels 120
Functions for debug and log output ... i 121
All logging functions at a glancettt 121
10.7 Debugging LilyPond 122
10.7.1 Debugging OVErVIEWttt e e 122
10.7.2 Debugging CH-+ code.ot 123
10.7.3 Debugging Scheme codeo 124
10.8 Tracing object relationships. 126
10.9 Adding or modifying featureso 127
10.9.1 Write the code. ... 127
10.9.2 Write regression tests 127
10.9.3 Write convert-ly rule. ... 127

10.9.4 Automatically update documentation i, 127

10.9.5 Manually update documentation.................. i, 128
10.9.6 Edit changes.tely ... i 128
10.9.7 Verify successful build 128
10.9.8 Verify regression tests.ot 129
10.9.9 Post patch for comments. 129
10.9.10 Push patch 129
10.9.11 Closing the ISSUES. . .o v ettt e 129
10.10 Tterator tutorialo o i e 130
10.11 Engraver tutorial.. ... e 130
10.11.1 Useful methods for information processing, 130
10.11.2 Translation ProCeSSttt e ettt 130
10.11.3 Preventing garbage collection for SCM member variables.................. 130
10.11.4 Listening to music evVentst e 131
10.11.5 Acknowledging grobsot 131
10.11.6 Engraver declaration/documentation................ ool 132
10.12 Callback tutorial o e 132
10.13 Understanding pure properties.ooeouiiiiiiiiii it 132
10.13.1 Purity in LilyPond 132
10.13.2 Writing a pure function........... ..o i e 133
10.13.3 How purity is defined and stored............. ... i i 133
10.13.4 Where purity is usedot 134
10.13.5 Case StUAIES . .« oottt e 134
10.13.6 Debugging tips . ..o vttt e 135
10.14 LilyPond SCOPING nvet it 135
10.15 Scheme->C interfacet e 135
10.15.1 COMPATISOIL « « + v e ettt et ettt et e e e e ettt e et e e 136
10.15.2 CONVEISION « ..ttt ettt et et e e e e e e et e e et e 137
10.16 LilyPond miscellany i 137
10.16.1 Spacing algorithms i 137
10.16.2 Info from Han-Wen email i 137
10.16.3 Music functions and GUILE debugging, 141
10.16.4 Articulations on EventChord i 142
11 Release work.......... 143
11.1 Development phaseso e e 143
11.2 Minor release checklist. ... 143
11.3 Major release checklist. i 145
11.4 Release exXtra NOtESttt e e e 147
11.5 Notes on builds with GUB i 148
12 Build system notes............. 151
12.1 Build system OVervIewWttt e 151
12.2 Tips for working on the build system i 151
12.3 General build system notes ... 151
12.3.1 How stepmake WOTKS. 152
124 Doc buildo 155
12.4.1 The function of make doc........ ..o 155
12.4.2 Building a bibliographyo 161

12.5 Website build 162

13 Modifying the Emmentaler font........................... 168
13.1 Overview of the Emmentaler font............ i i 168
13.2 Font creation tools 168
13.3 Adding a new font SeCtion 168
13.4 Adding a new glyph 168
13.5 Building the changed font o i 169
13.6 METAFONT formatting rulest 169

14 Administrative policies.................. 170
14.1 Meta-policy for this document i 170
14.2 Environment variables....... ... i 170
T4.3 Mt OTS . o o e 170

The Bug Meister 171
The Doc MeEISTET. . .« oo e e 171
The Patch Meister.o e 171
The Translation Meister e 171
14.4 Managing Staging and Master branches with Patchy 172
14.4.1 Overview of Patchy 172
14.4.2 Patchy requirementso e 172
14.4.3 Installing Patchy i 172
14.4.4 Configuring Patchy 172
14.4.5 Running the script. ... 173
14.4.6 Automating Patchy 173
14.4.7 Troubleshooting Patchy 174
14.5 Administrative mailing list............ . 174
14.6 Grand Organization Project (GOP)o i 175
14.6.1 MoOtivationooiiii i e 175
14.6.2 Ongoing JODS ..ottt 176
14.6.3 Policy deCiSions.ttt e 176
14.6.4 Policy decisions (finished).......... 178
14.6.4.1 GOP-PROP 1 - python formatting.................. ..., 178
14.6.4.2 GOP-PROP 2 - mentors and frogs ..., 178
14.6.4.3 GOP-PROP 3 - C++ formatting. 179
14.6.4.4 GOP-PROP 4 - lessons from 2.14 ... i 179
14.6.4.5 GOP-PROP 5 - build system output (not accepted) 181
14.6.4.6 GOP-PROP 6 - private mailing list, 181
14.6.4.7 GOP-PROP 7 - developers as reSourcesc.oueueeeenuneeennn.. 182
14.6.4.8 GOP-PROP 8 - issue priorities.oouiuiiiii e 182
14.6.4.9 GOP-PROP 9 - behavior of make doc............t 183

14.7 Grand LilyPond Input Syntax Standardization (GLISS)................. 185
14.7.1 Specific GLISS 1SSUES . . oottt e 186
14.8 Unsorted POLiCIESottt 188
Appendix A LilyPond grammar 190

Appendix B GNU Free Documentation License............. 426

1 Introduction to contributing
This chapter presents a quick overview of ways that people can help LilyPond.

1.1 Help us

We need you!

Thank you for your interest in helping us — we would love to see you get involved! Your
contribution will help a large group of users make beautifully typeset music.

Even working on small tasks can have a big impact: taking care of them allows experienced
developers work on advanced tasks, instead of spending time on those simple tasks.

For a multi-faceted project like LilyPond, sometimes it’s tough to know where to begin. In
addition to the avenues proposed below, you can send an e-mail to the lilypond-devel@gnu.org
(https://lists.gnu.org/mailman/listinfo/lilypond-devel) mailing list, and we’ll help
you to get started.

Simple tasks
No programming skills required!
e Mailing list support: answer questions from fellow users.

e Bug reporting: help users create proper Section “Bug reports” in General Information,
and/or join the Bug Squad to organize Section “Issues” in Contributor’s Guide.

e Documentation: small changes can be proposed by following the guidelines for Section
“Documentation suggestions” in Contributor’s Guide.

e LilyPond Snippet Repository (LSR): create and fix snippets following the guidelines in
Section “Adding and editing snippets” in Contributor’s Guide.

e Discussions, reviews, and testing: the developers often ask for feedback about new docu-
mentation, potential syntax changes, and testing new features. Please contribute to these
discussions!

Advanced tasks

These jobs generally require that you have the source code and can compile LilyPond.

Note: We suggest that contributors using Windows or MacOS X do
not attempt to set up their own development environment; instead, use
Lilydev as discussed in Section “Quick start” in Contributor’s Guide.

Contributors using Linux or FreeBSD may also use Lilydev, but if they prefer their own
development environment, they should read Section “Working with source code” in Contributor’s
Guide, and Section “Compiling” in Contributor’s Guide.

Begin by reading Section “Summary for experienced developers” in Contributor’s Guide.

e Documentation: for large changes, see Section “Documentation work” in Contributor’s
Guide.

e Website: the website is built from the normal documentation source. See the info about
documentation, and also Section “Website work” in Contributor’s Guide.

e Translations: see Section “Translating the documentation” in Contributor’s Guide, and
Section “Translating the website” in Contributor’s Guide.

e Bugfixes or new features: read Section “Programming work” in Contributor’s Guide.

https://lists.gnu.org/mailman/listinfo/lilypond-devel
https://lists.gnu.org/mailman/listinfo/lilypond-devel

Chapter 1: Introduction to contributing 2

1.2 Overview of work flow

Advanced note: Experienced developers should skip to Section 1.3 [Summary for
experienced developers], page 2.

Git is a wersion control system that tracks the history of a program’s source code. The
LilyPond source code is maintained as a Git repository, which contains:

e all of the source files needed to build LilyPond, and

e a record of the entire history of every change made to every file since the program was born.

The ‘official’ LilyPond Git repository is hosted by the GNU Savannah software forge at
http://git.sv.gnu.org.

Changes made within one contributor’s copy of the repository can be shared with other
contributors using patches. A patch is a text file that indicates what changes have been made.
If a contributor’s patch is approved for inclusion (usually through the mailing list), someone on
the current development team will push the patch to the official repository.

The Savannah software forge provides two separate interfaces for viewing the LilyPond Git
repository online: cgit (http://git.sv.gnu.org/cgit/lilypond.git/) and gitweb (http://
git.sv.gnu.org/gitweb/?p=lilypond.git).

Git is a complex and powerful tool, but tends to be confusing at first, particularly for users not
familiar with the command line and/or version control systems. We have created the 1ily-git
graphical user interface to ease this difficulty.

Compiling (‘building’) LilyPond allows developers to see how changes to the source code
affect the program itself. Compiling is also needed to package the program for specific operating
systems or distributions. LilyPond can be compiled from a local Git repository (for developers),
or from a downloaded tarball (for packagers). Compiling LilyPond is a rather involved process,
and most contributor tasks do not require it.

Contributors can contact the developers through the ‘lilypond-devel’ mailing list. The mailing
list archive is located at http://lists.gnu.org/archive/html/lilypond-devel/. If you
have a question for the developers, search the archives first to see if the issue has already been
discussed. Otherwise, send an email to 1ilypond-devel@gnu.org. You can subscribe to the
developers’ mailing list here: http://lists.gnu.org/mailman/listinfo/lilypond-devel.

Note: Contributors on Windows or MacOS X wishing to compile code
or documentation are strongly advised to use our Debian LilyPond De-
veloper Remix, as discussed in Chapter 2 [Quick start], page 5.

1.3 Summary for experienced developers

If you are already familiar with typical open-source tools, here’s what you need to know:
e source repository: hosted by GNU savannah.
http://git.savannah.gnu.org/gitweb/?p=1lilypond.git
e issue tracker: currently hosted by Sourceforge.
https://sourceforge.net/p/testlilyissues/issues/
e patch review: Reitveld — the collaborative code review tool.
https://codereview.appspot.com

e environment variables: many maintenance scripts, and many instructions in this guide rely
on predefined Section 14.2 [Environment variables], page 170.

e mailing lists: given on Section “Contact” in General Information.

http://git.sv.gnu.org
http://git.sv.gnu.org/cgit/lilypond.git/
http://git.sv.gnu.org/gitweb/?p=lilypond.git
http://git.sv.gnu.org/gitweb/?p=lilypond.git
http://lists.gnu.org/archive/html/lilypond-devel/
mailto:lilypond-devel@gnu.org
http://lists.gnu.org/mailman/listinfo/lilypond-devel
http://git.savannah.gnu.org/gitweb/?p=lilypond.git
https://sourceforge.net/p/testlilyissues/issues/
https://codereview.appspot.com

Chapter 1: Introduction to contributing 3

e Git branches:

e master: always base your work from this branch, but never push directly to it. Patches
are always pushed directly to the staging branch instead.

e staging: always push to this branch after a successful patch review cycle (see below).

e translation: Translators should base their work on this branch only and push any
translation patches directly to it as well.

e dev/foo: feel free to push any new branch name under dev/.

e regression tests: also known as “regtests”. A collection of more than a thousand .1y files
that are used to track LilyPond’s engraving output between released stable and unstable
versions as well as checked for all patches submitted for testing.

If a patch introduces any unintentional changes to any of the regtests it is very likely it will
be rejected (to be fixed) — always make sure that, if you expect any regression test changes,
that they are explained clearly as part of the patch description when submitting for testing.
For more information see Chapter 9 [Regression tests|, page 105.

e reviews: after finishing work on a patch or branch:

1. upload it with our custom git-cl ‘helper-script’; see Section 2.3 [git-cl], page 9. In
addition to uploading patches to the Google’s Rietveld code review tool the script will
also update the issue tracker (or add a new issue as appropriate) so that any reference
to the patch is not lost. The current “status” of any patch submitted is always managed
on the issue tracker; also see Chapter 8 [Issues|, page 97.

Once submitted the patch will be given a status of Patch-new and will enter the “Patch
Countdown”. More information on this can be found in the section Section 3.3.6
[Uploading a patch for review], page 27.

2. Patches are generally tested within 24 hours of submission. Once it has passed the
basic tests — make, make doc and a make test-baseline/check —, the tracker will be
updated and the patch’s status will change to Patch-review for other developers to
examine.

3. Every third day, the “Patch Meister” will examine the issue tracker and the Rietveld
code review tool for the submitted patch, looking for any comments by other developers.
Depending on what has been posted, the patch will be either; “moved on” to the next
patch status (Patch-countdown); set back to Patch-needs_work; or if more discussion
is needed, left at Patch-review. In all cases the issue tracker (not the Rietveld code
review tool) will be updated by the Patch Meister accordingly.

4. Once another three days have passed, any patch that has been given Patch-countdown
status will be changed to Patch-push, the issue tracker is updated, and the developer
can now push it directly to the staging branch (or email the patch — created with
git format-patch command — to one of the other developers who can push it for
you).

5. Automatic scripts run every few hours to merge the staging branch with master.

Advanced note: This process does means that most patches will take about
a week before finally being merged into master. With the limited resources
for reviewing patches available and a history of unintended breakages in the
master branch (from patches that have not had time to be reviewed properly),
this is the best compromise we have found.

1.4 Mentors

We have a semi-formal system of mentorship, similar to the medieval “journeyman/master”
training system. New contributors will have a dedicated mentor to help them “learn the ropes”.

Chapter 1: Introduction to contributing 4

Note: This is subject to the availability of mentors; certain jobs have
more potential mentors than others.

Contributor responsibilities

1.
2.

Ask your mentor which sections of the CG you should read.

If you get stuck for longer than 10 minutes, ask your mentor. They might not be able to help
you with all problems, but we find that new contributors often get stuck with something
that could be solved/explained with 2 or 3 sentences from a mentor.

If you have been working on a task much longer than was originally estimated, stop and ask
your mentor. There may have been a miscommunication, or there may be some time-saving
tips that could vastly simply your task.

4. Send patches to your mentor for initial comments.

Inform your mentor if you're going to be away for a month, or if you leave entirely. Con-
tributing to lilypond isn’t for everybody; just let your mentor know so that we can reassign
that work to somebody else.

Inform your mentor if you’re willing to do more work — we always have way more work
than we have helpers available. We try to avoid overwhelming new contributors, so you’ll
be given less work than we think you can handle.

Mentor responsibilities

1.

Respond to questions from your contributor(s) promptly, even if the response is just “sorry,
I don’t know” or “sorry, I'm very busy for the next 3 days; I'll get back to you then”. Make
sure they feel valued.

Inform your contributor(s) about the expected turnaround for your emails — do you work
on lilypond every day, or every weekend, or what? Also, if you’ll be unavailable for longer
than usual (say, if you normally reply within 24 hours, but you’ll be at a conference for a
week), let your contributors know. Again, make sure they feel valued, and that your silence
(if they ask a question during that period) isn’t their fault.

Inform your contributor(s) if they need to do anything unusual for the builds, such as doing
a “make clean / doc-clean” or switching git branches (not expected, but just in case...)

You don’t need to be able to completely approve patches. Make sure the patch meets
whatever you know of the guidelines (for doc style, code indentation, whatever), and then
send it on to -devel for more comments. If you feel confident about the patch, you can push
it directly (this is mainly intended for docs and translations; code patches should almost
always go to -devel before being pushed).

Keep track of patches from your contributor. Either upload them to Rietveld yourself,
or help+encourage them to upload the patches themselves. When a patch is on Rietveld,
it’s your responbility to get comments for it, and to add a link to the patch to the google
tracker. (tag it “patch-new”, or “patch-review” if you feel very confident in it)

Encourage your contributor to review patches, particularly your own! It doesn’t matter if
they’re not familiar with C++ / scheme / build system / doc stuff — simply going through
the process is valuable. Besides, anybody can find a typo!
Contact your contributor at least once a week. The goal is just to get a conversation started
— there’s nothing wrong with simply copy&pasting this into an email:

Hey there,

How are things going? If you sent a patch and got a review, do
you know what you need to fix? If you sent a patch but have no
reviews yet, do you know when you will get reviews? If you are
working on a patch, what step(s) are you working on?

2 Quick start

Want to submit a patch for LilyPond? Great! Never created a patch before? Never compiled
software before? No problem! This chapter is for you and will help you do this as quickly and
easily as possible.

2.1 LilyDev

“LilyDev” is a custom GNU/Linux operating system which includes all the necessary software
and tools to compile LilyPond, the documentation and the website (also see Chapter 6 [Website
work], page 86).

Note: LilyDev does not include the software for the Grand Unified
Builder — also see [Grand Unified Builder (GUB)], page 20.

While compiling LilyPond on Mac OS and Windows is possible, both environments are
complex to set up. LilyDev can be easily run inside a ‘virtual machine’ on either of these
operating systems relatively easily using readily available virtualization software. We recommend
using VirtualBox as it is available for all major operating systems and is very easy to install &
configure.

LilyDev comes in two ‘flavours’: containers and a standard disk image. Windows or Mac
OS users should choose the disk image (to be run in a virtual machine), that is the file named
lilydev-vm-fedora-VERSION. GNU/Linux users are recommended to choose one of the con-
tainers (currently Debian or Fedora), which are smaller in size, lightweight and easier to manage.
Download the appropriate file from here:

https://github.com/fedelibre/LilyDev0S/releases/latest
(B
Note: Apart from installing and configuring LilyDev in VirtualBox,
the rest of the chapter assumes that you are comfortable using the
command-line and is intended for users who may have never created
a patch or compiled software before. More experienced developers (who
prefer to use their own development environment) may still find it in-

structive to skim over the following information.
S J

If you are not familiar with GNU/Linux, it may be beneficial to read a few “introduction to
Linux” type web pages.

Installing LilyDev in VirtualBox

This section discusses how to install and use LilyDev with VirtualBox.

Note: If you already know how to install a virtual machine using a disc
image inside VirtualBox (or your own virtualization software) then you
can skip this section and go straight to Section 2.2 [lily-git], page 7.

1. Download VirtualBox from here:

http://www.virtualbox.org/wiki/Downloads

Note: In virtualization terminology, the operating system where
VirtualBox is installed is known as the host. LilyDev will be in-
stalled ‘inside’ VirtualBox as a guest.

https://github.com/fedelibre/LilyDevOS/releases/latest
http://www.virtualbox.org/wiki/Downloads

Chapter 2: Quick start 6

2. The disk image you downloaded is in raw format. As VirtualBox does not support the raw
format, you’ll have to convert it to VDI format:

VBoxManage convertfromraw lilydev-vm-fedora-VERSION.raw lilydev-vm-fedora-
VERSION.vdi

3. Start the VirtualBox software and click ‘New’ to create a new “virtual machine”.

The ‘New Virtual Machine Wizard’ will walk you through setting up your guest virtual
machine. Choose an appropriate name for your LilyDev installation and select the ‘Linux’
operating system. When selecting the ‘version’ choose ‘Fedora (64 bit)’. If you do not have
that specific option choose ‘Linux 2.6/3.x/4.x (64-bit)’.

4. Select the amount of RAM you will allow the LilyDev guest to use from your host operating
system when it is running. If possible, use at least 700 MB of RAM; the more RAM you
can spare from your host the better, although LilyDev will currently use no more than 4
GB (4096 MB) even if you are able to assign more.

5. In the ‘Hard Disk’ step, you’ll use the VDI file you’ve previously created. You may move
it within the virtual machine’s folder already created by the wizard (in GNU/Linux the
default should be ~/VirtualBox VMs/NAME). Click on ‘Use an existing virtual hard disk
file’ and browse to the VDI file.

6. Verify the summary details and click ‘Create’, when you are satisfied. Your new guest will
be displayed in the VirtualBox window.

Note: The image can be booted only on EFI, so you must enable
it within the virtual machine’s settings — click on System — Moth-
erboard and select ‘Extended features: Enable EFT’.

7. Click the ‘Start’ button and wait until the login screen appears. You'll log in as dev user;
type the password 1ilypond. Before starting any work, be sure to complete the next steps.

8. You might need to change the keybord layout from default US (american) to your national
layout. Click on the menu icon on the bottom left, then on Preferences — Keyboard and
Mouse — Keyboard Layout: add your layout and then move it up to the list so it will be
the default.

9. Disable the screensaver: click on the menu icon, then on Preferences — Screensaver; in the
Mode dropdown menu choose ‘Disable Screen Saver’.

10. Finally you should run a setup script. Click on System Tools — QTerminal to launch the
command line. Then type ./setup.sh to run the interactive script which will set up git
and download all the repositories needed to build LilyPond.

Configuring LilyDev in VirtualBox

VirtualBox has extra ‘guest additions’ which although are not necessary to use LilyDev or
compile LilyPond, do provide some additional features to your Virtual Machine to make it
easier to work with. Such as being able to dynamically resize the LilyDev window, allow seamless
interaction with your mouse pointer on both the host and guest and let you copy/paste between
your host and guest if needed.

1. Select the ‘Devices’ menu from the virtual machine window and choose ‘Install Guest Ad-
ditions...”. This will automount a CD which will prompt you to autorun it. Click OK and
follow the instructions. It is recommended to reboot the guest when the installation is
complete.

Other virtualization software will also have their own ‘guest’ additions, follow the normal
procedures for your virtualization software with LilyDev as the client.

Chapter 2: Quick start 7

2. Restart LilyDev to complete the installation of the guest additions.

Advanced note: If you do any kernel upgrades, you may need to reinstall the
additional software. Just follow the step above again and reboot when the
reinstallation is complete.

Other items that may be helpful:

e In the settings for the virtual machine, set the network to Bridged mode to allow you to
access shared folders when using Windows hosts.

e Set up any additional features, such as ‘Shared Folders’ between your main operating system
and LilyDev. This is distinct from the networked share folders in Windows. Consult the
external documentation for this.

Some longtime contributors have reported that ‘shared folders’ are rarely useful and not
worth the fuss, particularly since files can be shared over a network instead.

e Pasting into a terminal is done with Ctr1+Shift+v.
e Right-click allows you to edit a file with the text editor (default is Leafpad).

Known issues and warnings

Not all hardware is supported in all virtualization tools. In particular, some contributors have
reported problems with USB network adapters. If you have problems with network connection
(for example Internet connection in the host system is lost when you launch virtual system), try
installing and running LilyDev with your computer’s built-in network adapter used to connect
to the network. Refer to the help documentation that comes with your virtualization software.

2.2 lily-git

The ‘LilyPond Contributor’s Git Interface’ (otherwise known as 1ily-git.tcl) is a simple-to-
use GUI to help you download and update the LilyPond source code as well as an aid to making
software patches.

Where to get lily-git
Depending on your development environment, lily-git may already be installed on your computer.

e If you are using LilyDev (see Section 2.1 [LilyDev], page 5) then lily-git should already be
installed and ready to run. If this is not the case you can easily turn it on by adding the
following line in ~/.bashrc:

add lily-git to the PATH
PATH=$LILYPOND_GIT/scripts/auxiliar:"${PATH}"

e For those not using LilyDev, lily-git can be obtained by downloading the software directly.
See Section 3.1 [Manually installing lily-git.tcl], page 14.

o lily-git is part of the LilyPond source code and is located in
$LILYPOND_GIT/scripts/auxiliar/lily-git.tcl.

Using lily-git to download the source code
1. Type the following command into a Terminal:
lily-git.tcl
You will be prompted to enter a name and email address into the lily-git UI. This information

is used to label any patches you create (using the lily-git UI or git via the command line)
and can be changed later if required. See [Configuring Git], page 15.

2. Click on the Submit button to update lily-git with the information.

Chapter 2: Quick start 8

3. Click on the “Get source” button.

A directory called 1ilypond-git is created within your home directory and the entire source
code will start to be downloaded into it.

Note: Be patient! There is no progress bar in the lily-git Ul but
the complete source is around 180 MB.

When the source code has been downloaded, the “command output” window in the lily-git
UI will update and display “Done” on the very last line and the button label will change
to say “Update source”.

Note: Some contributors have reported that occasionally nothing
happens at this step at all. If this occurs, then try again in a
few minutes — it could be an intermittant network problem. If the
problem persists, please ask for help.

4. Close the lily-git GUI and navigate to the 1ilypond-git directory to view and edit the
source files.

If this is the first time you will be attempting to compile LilyPond, please see the section
Section 2.4 [Compiling with LilyDev], page 12, before continuing.

How to use lily-git
Here is a brief description of what each button does in the lily-git UI.

Advanced note: Throughout the rest of this manual, most command-line input
should be entered from within the top level of the ~/lilypond-git/ directory.
This is known as the top of the source directory and is also referred to as $LILY-
POND_GIT as a convention for those users who may have configured their own
locations of the LilyPond source code.

Note: For those less experienced contributors using lily-git, we recom-
mend that you only work on one set of changes at a time and not start
on any new changes until your first set has been accepted.

1. Update source

Click the “Update source” button to get any recent changes to the source code that have been
added by other contributors since your last session.

Note: If another contributor has updated files in the source code that
you had been working on then updating your own copy of the source
code may result in what is known as a merge conflict. If this occurs,
follow the instructions to “Abort changes”, below. Note that your work
will not be lost.

2a. New local commit
A single commit typically represents one logical set of related changes (such as a bug-fix), and
may incorporate changes to multiple files at the same time.

When you’re finished making the changes for a commit, click the “New local commit” button.
This will open the “Git Commit Message” window. The message header is required, and the
message body is optional.

Chapter 2: Quick start 9

After entering a commit message, click “OK” to finalize the commit.

Advanced note: for more information regarding commits and commit messages, see
Section 3.3.4 [Commits|, page 25.

2b. Amend previous commit

You can go back and make changes to the most recent commit with the “Amend previous
commit” button. This is useful if a mistake is found after you have clicked the “New local
commit” button.

To amend the most recent commit, re-edit the source files as needed and then click the
“Amend previous commit” button. The earlier version of the commit is not saved, but is
replaced by the new one.

Note: This does not update the patch files; if you have a patch file from
an earlier version of the commit, you will need to make another patch
set when using this feature. The old patch file will not be saved, but
will be replaced by the new one after you click on “Make patch set”.

3. Make patch set

Before making a patch set from any commits, you should click the “Update source” button to
make sure the commits are based on the most recent remote snapshot.

When you click the “Make patch set” button, 1ily-git.tcl will produce patch files for any
new commits, saving them to the current directory. The command output will display the name
of the new patch files near the end of the output:

0001-CG-add-1ily-git-instructions.patch
Done.
Send patch files to the appropriate place:
e If you have a mentor, send it to them via email.
e Translators should send patches to translations@lilynet.net.

e More experienced contributors should upload the patch for web-based review. This requires
additional software and use of the command-line; see Section 3.3.6 [Uploading a patch for
review|, page 27.

e If you have trouble wuploading the patch for review, ask for help on
lilypond-devel@gnu.org.

The “Abort changes — Reset to origin” button

Note: Only use this if your local commit history gets hopelessly con-
fused!

The button labeled “Abort changes — Reset to origin” will copy all changed files to a subdi-
rectory of $LILYPOND_GIT named aborted_edits/, and will reset the repository to the current
state of the remote repository (at git.sv.gnu.org).

2.3 git-cl

Git-cl is a ‘helper script’ that uploads patches to Google’s Rietveld Code Review Tool — used
by the developers for patch review — and, at the same time, updates LilyPond’s issue tracker.

mailto:translations@lilynet.net
mailto:lilypond-devel@gnu.org

Chapter 2: Quick start 10

Installing git-cl

Note: LilyDev users can jump straight to the next section on updating
git-cl as it will already be installed in your home directory.

1. Download git-cl by running the command:
git clone https://github.com/gperciva/git-cl.git
or, if that command fails for any reason, try:
git clone git://github.com/gperciva/git-cl.git
2. Add the git-cl/ directory to your PATH or create a symbolic link to the git-cl and
upload.py scripts in one of your PATH directories (e.g. $HOME/bin).

In GNU/Linux you can add directories to PATH by adding this line to your .bashrc file
located in your home directory:

PATH="/directory_containing_git-cl:"${PATH}"

Updating git-cl

LilyDev users should make sure that they always have the latest version of git-cl installed. It
is possible that changes have been made to git-cl that are not (yet) included in the version of
LilyDev that you are using.

Using a terminal run the following commands:
cd “/git-cl/
git pull
This will download and update you to the lastest version of git-cl.

Configuring git-cl
Because git-cl updates two separate websites (Google’s Rietveld Code Review Tool and Lily-
Pond’s issue tracker) you must have a valid user account (login and password) for both sites.

Set up a login account for Rietveld Code Review Tool

For the Rietveld Code Review Tool you will need a Google account but this does not require
‘Google’ email address; i.e. any email address for your Google account can be used. Just select
the option “I prefer to use my current email address” when you sign up with Google.

Note: In order for git-cl to work correctly with this Google account,
your Google Account Settings must have the ‘Access for less secure apps’
set to ‘Allowed’ — this is normally the default setting.

Set up a login account for LilyPond’s Issue Tracker
Please register a user account at https://sourceforge.net/user/registration preferably
using the same email address that you want to use LilyPond Developer mailing list login.

Once you have created this Sourceforge user account, send an email to the LilyPond Developer’s
mailing list (1ilypond-devel@gnu.org) asking for write access to the issue tracker along with
your Sourceforce Username (not email address) and someone will then be able to set this up for
you.

Authorizing git-cl for the LilyPond issue tracker

The git-cl command itself also needs to be ‘authorized’ so that it can access the LilyPond
issue tracker.

Chapter 2: Quick start 11

Once you have been given a valid login for the LilyPond issue tracker, go to the ‘Account
settings’ and select the ‘OAuth’ tab.

Locate the ‘Register New Application’ section and enter git-cl in the ‘Application Name:’
field.

Click on the ‘Register new application’ button. You should now see ‘git-cl’ listed under the
‘My Applications’ section.

Click on the ‘Generate Bearer Token’ button. You should now see ‘git-cl’ listed under the
‘Authorized Applications’ section along with a value for the ‘Bearer Token’ entry. This
value is used, in the next steps, to allow git-cl to access and update the LilyPond issue
tracker.

Installing ca-certificates

In order to have git-cl properly update issues on the SourceForge Allura issue tracker, you must
have the package ca-certificates installed. You can check to see if the package is installed

with

apt --installed list | grep ca-certificates

If ca-certificates is installed, you will get a result that shows the version that is installed.

If it is not installed, there will be no version displayed.

Install ca-certificates with the following:

sudo apt-get install ca-certificates

Running git-cl for the first time

1.

Using a terminal, move to the top level of the $LILYPOND_GIT directory and then run git-cl
with the config option:

cd $LILYPOND_GIT
git-cl config

You will see a series of prompts. For most of them you can simply accept the default value
by responding with a newline (i.e. by pressing return or enter).

The prompt for the Rietveld server (the patch review tool), which defaults to
codereview.appspot.com

Rietveld server (host[:port]) [codereview.appspot.com]:

The prompt for the Allura server (the issue tracker), which defaults to
https://sourceforge.net/p/testlilyissues/issues/

Allura server [https://sourceforge.net/p/testlilyissues/issues/]:

When prompted for the Allura bearer token copy/paste the value generated in the pre-
vious steps for Authorising git-cl for the LilyPond issue tracker

Allura bearer token (see https://sourceforge.net/auth/oauth/): f£dbfca60801533465480

Note: The above is a ‘fake’ bearer token used just for illustration.
Do not use this value.

Finally, the prompt for the CC 1ist, which defaults to 1ilypond-devel@gnu.org, the Lily-
Pond Developer’s email list.

CC list ("x" to clear) [lilypond-devel@gnu.org]:

The git-cl script should now be correctly configured for use.

Chapter 2: Quick start 12

2.4 Compiling with LilyDev

LilyDev is our custom GNU/Linux which contains all the necessary dependencies to do LilyPond
development; for more information, see Section 2.1 [LilyDev], page 5.

Preparing the build

To prepare the build directory, enter (or copy&paste) the below text. This should take less than
a minute.

cd $LILYPOND_GIT

sh autogen.sh --noconfigure
mkdir -p build/

cd build/

../configure

Building 1ilypond

Compiling LilyPond will take anywhere between 1 and 15 minutes on most ‘modern’ computers
— depending on CPU and available RAM. We also recommend that you minimize the terminal
window while it is building; this can help speed up on compilation times.

cd $LILYPOND_GIT/build/
make

It is possible to run make with the -j option to help speed up compilation times even more. See
Section 4.5 [Compiling LilyPond], page 51,
You may run the compiled 1ilypond with:

cd $LILYPOND_GIT/build/
out/bin/lilypond my-file.ly

Building the documentation

Compiling the documentation is a much more involved process, and will likely take 2 to 10 hours.

cd $LILYPOND_GIT/build/
make
make doc

The documentation is put in out-www/offline-root/. You may view the html files by
entering the below text; we recommend that you bookmark the resulting page:

firefox $LILYPOND_GIT/build/out-www/offline-root/index.html

Installing

Don’t. There is no reason to install LilyPond within LilyDev. All development work can (and
should) stay within the $LILYPOND_GIT directory, and any personal composition or typesetting
work should be done with an official GUB release.

Problems and other options

To select different build options, or isolate certain parts of the build, or to use multiple CPUs
while building, read Chapter 4 [Compiling], page 44.

In particular, contributors working on the documentation should be aware of some bugs in
the build system, and should read the workarounds in Section 4.6.2 [Generating documentation],
page 53.

Chapter 2: Quick start 13

2.5 Now start work!

LilyDev users may now skip to the chapter which is aimed at their intended contributions:

Chapter 5 [Documentation work], page 59,

Section 5.9 [Translating the documentation], page 75,
Chapter 6 [Website work], page 86,
Chapter 9 [Regression tests], page 105,

Chapter 10 [Programming work], page 111,

These chapters are mainly intended for people not using LilyDev, but they contain extra
information about the “behind-the-scenes” activities. We recommend that you read these at
your leisure, a few weeks after beginning work with LilyDev.

e Chapter 3 [Working with source code], page 14,
e Chapter 4 [Compiling], page 44,

14

3 Working with source code

Note: New contributors should read Chapter 2 [Quick start], page 5,
and in particular Section 2.2 [lily-git], page 7, instead of this chapter.

Advanced contributors will find this material quite useful, particularly if they are working
on major new features.

3.1 Manually installing lily-git.tcl

We have created an easy-to-use GUI to simplify git for new contributors. If you are comfortable
with the command-line, then skip ahead to Section 3.2 [Starting with Git], page 14.

Note: These instructions are only for people who are mnot using
Section 2.1 [LilyDev], page 5.

1. If you haven’t already, download and install Git.
e Windows users: download the .exe file labeled “Full installer for official Git” from:
https://git-for-windows.github.io/

e Other operating systems: either install git with your package manager, or download
it from the “Binaries” section of:

http://git-scm.com/download
2. Download the 1ily-git.tcl script from:
http://git.sv.gnu.org/cgit/lilypond.git/plain/scripts/auxiliar/lily-git.tcl
3. To run the program from the command line, navigate to the directory containing
lily-git.tcl and enter:
wish lily-git.tcl
4. Click on the “Get source” button.

This will create a directory called 1ilypond-git/ within your home directory, and will
download the source code into that directory (around 150 Mb). When the process is finished,
the “Command output” window will display “Done”, and the button label will change to
say “Update source”.

5. Navigate to the 1ilypond-git/ directory to view the source files.

Note: Throughout the rest of this manual, most command-line input
should be entered from $LILYPOND_GIT. This is referred to as the top
source directory.

Further instructions are in [How to use lily-git], page 8.

3.2 Starting with Git

Using the Git program directly (as opposed to using the 1ily-git.tcl GUI) allows you to have
much greater control over the contributing process. You should consider using Git if you want
to work on complex projects, or if you want to work on multiple projects concurrently.

https://git-for-windows.github.io/
http://git-scm.com/download
http://git.sv.gnu.org/cgit/lilypond.git/plain/scripts/auxiliar/lily-git.tcl

Chapter 3: Working with source code 15

3.2.1 Setting up

Note: These instructions assume that you are using the command-line
version of Git 1.5 or higher. Windows users should skip to Section 3.5
[Git on Windows|, page 37.

Installing Git

If you are using a Unix-based machine, the easiest way to download and install Git is through
a package manager such as rpm or apt-get — the installation is generally automatic. The only
required package is (usually) called git-core, although some of the auxiliary git* packages are
also useful (such as gitk).

Alternatively, you can visit the Git website (http://git-scm.com/) for downloadable
binaries and tarballs.

Initializing a repository
Once Git is installed, get a copy of the source code:
git clone git://git.sv.gnu.org/lilypond.git “/lilypond-git

The above command will put the it in “/1lilypond-git, where ~ represents your home

directory.

Technical details

This creates (within the $LILYPOND_GIT directory) a subdirectory called .git/, which Git uses
to keep track of changes to the repository, among other things. Normally you don’t need to
access it, but it’s good to know it’s there.

Configuring Git

Note: Throughout the rest of this manual, all command-line input
should be entered from the top directory of the Git repository being
discussed (eg. $LILYPOND_GIT). This is referred to as the top source
directory.

Before working with the copy of the main LilyPond repository, you should configure some
basic settings with the git config command. Git allows you to set both global and repository-
specific options.

To configure settings that affect all repositories, use the -~-global command line option. For
example, the first two options that you should always set are your name and email, since Git
needs these to keep track of commit authors:

git config --global user.name "John Smith"
git config --global user.email john@example.com

To configure Git to use colored output where possible, use:
git config --global color.ui auto

The text editor that opens when using git commit can also be changed. If none of your
editor-related environment variables are set (3GIT_EDITOR, $VISUAL, or $EDITOR), the
default editor is usually vi or vim. If you're not familiar with either of these, you should
probably change the default to an editor that you know how to use. For example, to change the
default editor to nano, enter:

git config --global core.editor nano

http://git-scm.com/

Chapter 3: Working with source code 16

Finally, and in some ways most importantly, let’s make sure that we can easily see the state
of our working copy, without the need of typing git status repeatedly. If you're not using
LilyDev, add the following lines to your ~/.bashrc:
export PS1="\u@\h \w\$(__git_ps1)$ "
export GIT_PS1_SHOWDIRTYSTATE=true
export GIT_PS1_SHOWUNTRACKEDFILES=true
export GIT_PS1_SHOWUPSTREAM=auto

The first line will show the branch we’re on. The other lines will use some symbols next to
the branch name to indicate some kind of state. “*” means that there are unstaged changes,
“+” indicates staged changes; if there are untracked files, a “%” will appear. Finally, we can
also see if our HEAD is behind (“<”) or ahead (“>”) of its upstream, and if they have diverged
(“<>") or they are synced (“=").

You may need to install the additional bash-completion package, but it is definitely worth
it. After installation you must log out, and then log back in again to enable it.

Technical details

Git stores the information entered with git config --global in the file .gitconfig, located
in your home directory. This file can also be modified directly, without using git config. The
.gitconfig file generated by the above commands would look like this:

[user]

name = John Smith

email = john@example.com
[color]

ui = auto
[core]

editor = nano

Using the git config command without the --global option configures repository-specific
settings, which are stored in the file .git/config. This file is created when a repository is
initialized (using git init), and by default contains these lines:

[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true

However, since different repository-specific options are recommended for different develop-
ment tasks, it is best to avoid setting any now. Specific recommendations will be mentioned
later in this manual.

3.2.2 Git for the impatient

Advanced note: The intent of this subsection is to get you working on lilypond as

soon as possible. If you want to learn about git, go read Section 3.7 [Other Git

documentation], page 43.

Also, these instructions are designed to eliminate the most common problems we

have found in using git. If you already know git and have a different way of working,

great! Feel free to ignore the advice in this subsection.

Ok, so you’ve been using 1ily-git.tcl for a while, but it’s time to take the next step. Since

our review process delays patches by 60-120 hours, and you want to be able to work on other
stuff while your previous work is getting reviewed, you're going to use branches.

You can think of a branch as being a separate copy of the source code. But don’t worry
about it.

Chapter 3: Working with source code 17

Start work: make a new branch

Let’s pretend you want to add a section to the Contributor’s Guide about using branches.

Start by updating the repository, then making a new branch. Call the branch anything you
want as long as the name starts with dev/. Branch names that don’t begin with dev/ are
reserved for special things in lilypond.

git checkout master
git pull -r origin master
git branch dev/cg

Switch to that branch

Nothing has happened to the files yet. Let’s change into the new branch. You can think of this
as “loading a file”, although in this case it’s really “loading a directory and subdirectories full
of files”.

git checkout dev/cg
Your prompt now shows you that you’re on the other branch:
gperciva@LilyDev:~/lilypond-git (dev/cg)$

To be able to manage multiple lilypond issues at once, you’ll need to switch branches. You
should have each lilypond issue on a separate branch. Switching branches is easy:

git checkout master

git checkout origin/staging

git checkout origin/release/unstable
git checkout dev/cg

Branches that begin with origin/ are part of the remote repository, rather than your local
repository, so when you check them out you get a temporary local branch. You should never
make changes directly on a branch beginning with origin/. You get changes into the remote
repository by making them in local branches, and then pushing them to origin/staging as
described below.

Make your changes
Edit files, then commit them.
git commit -a

Remember how I said that switching to a branch was like “loading a directory”? Well, you’ve
just “saved a directory”, so that you can “load” it later.

Advanced note: If you have used cvs or svn, you may be very confused: those
programs use “commit” to mean “upload my changes to the shared source reposi-
tory”. Unfortunately, just to be different, git commit means “save my changes to
the files”.

When you create a new file, you need to add it to git, then commit it:

git add input/regression/avoid-crash-on-condition.ly
git commit -a

Edit more files. Commit them again. Edit yet more files, commit them again. Go eat dinner.
Switch to master so you can play with the latest changes from other developers. Switch back
to your branch and edit some more. Commit those changes.

At this stage, don’t worry about how many commits you have.

Chapter 3: Working with source code 18

Save commits to external files

Branches are nerve-wracking until you get used to them. You can save your hard work as
individual .patch files. Be sure to commit your changes first.

git commit -a
git format-patch master

I personally have between 4 and 20 of those files saved in a special folder at any point in
time. Git experts might laugh as that behavior, but I feel a lot better knowing that I've got
those backups.

Prepare your branch for review
After committing, you can update your branch with the latest master:
git commit -a
git checkout master
git pull -r origin master
git checkout dev/cg
git rebase master

Due to the speed of lilypond development, sometimes master has changed so much that your
branch can no longer be applied to it. In that happens, you will have a merge conflict. Stop
for a moment to either cry or have a stiff drink, then proceed to Section 3.4.1 [Merge conflicts],
page 30.

Upload your branch

Finally, you’re finished your changes. Time to upload for review. Make sure that you're on your
branch, then upload:

git checkout dev/cg
git-cl upload master

Wait for reviews

While you’re waiting for a countdown and reviews, go back to master, make a dev/doc-beams
branch, and start adding doc suggestions from issue 12345 from the tracker. Or make a
dev/page-breaks and fix bug in page breaking. Or whatever. Don’t worry, your dev/cg is
safe.

Combining commits (optional unless you have broken commits)

Does the history of your branch look good?
gitk

If you have a lot of commits on your branch, you might want to combine some of them.
Alternately, you may like your commits, but want to edit the commit messages.

git rebase -i master

Follow instructions on the screen.

Note: This step gives you the power to completely lose your work. Make
a backup of your commits by saving them to .patch files before playing
with this. If you do lose your work, don’t despair. You can get it back
by using git reflog. The use of git reflog is not covered here.

Chapter 3: Working with source code 19

Note: If any of the commits on your branch represent partial work that
will not pass make && make doc, you must squash these commits into a
working commit. Otherwise, your push will break staging and will not
be able to be merged to master. In general, you will be safer to have
one commit per push.

Push to staging
When you’ve got the coveted Patch-push status, time to prepare your upload:

git fetch
git rebase origin/staging dev/cg~0
gitk HEAD

(N
Note: Do not skip the gitk step; a quick 5-second check of the visual

history can save a great deal of frustration later on. You should see a
set of your commits that are ahead of origin/staging, with no label

for the top commit — only a SHAT1 id.
N J

(0
Note: If origin/staging and origin/master are the same commit,

your branch (dev/cg in the example) will also be at the top of the gitk
tree. This is normal.

J

If everything looks good, push it:
git push origin HEAD:staging
Then change back to your working branch:

git checkout dev/cg

(N
Note: It is a best practice to avoid rebasing any of your branches to
origin/staging. If origin/staging is broken, it will be deleted and
rebuilt. If you have rebased one of your branches to origin/staging,
the broken commits can end up in your branch. The commands given
above do the rebase on a temporary branch, and avoid changing your

working branch.
N J

Delete your branch (safe)

After a few hours, if there’s nothing wrong with your branch, it should be automatically moved
to origin/master. Update, then try removing your branch:

git checkout master
git pull -r origin master
git branch -d dev/cg

The last command will fail if the contents of dev/cg are not present in origin/master.

Delete your branch (UNSAFE)

Sometimes everything goes wrong. If you want to remove a branch even though it will cause
your work to be lost (that is, if the contents of dev/cg are not present in master), follow the
instructions in “Delete your branch (safe)”, but replace the -d on the final line with a -D.

3.2.3 Other repositories

We have a few other code repositories.

Chapter 3: Working with source code 20

lilypond-extra

There is a separate repository for general administrative scripts, as well as pictures and media
files for the website. People interested in working on the website should download this repository,
and set their $LILYPOND_WEB_MEDIA_GIT environment variable to point to that repository.

https://github.com/gperciva/lilypond-extra
To configure an environment variable in bash (the default for most GNU /Linux distributions),
export LILYPOND_WEB_MEDIA_GIT=$HOME/dir/of/lilypond-extra/

Be aware that 1ilypond-extra is the definitive source for some binary files - in particular
PDF versions of papers concerning LilyPond. To add further PDFs of this sort, all that is neces-
sary is to add the PDF to 1ilypond-extra and then add a reference to it in the documentation.
The file will then be copied to the website when make website is run.

However, pictures that are also used in the documentation build are mastered in the main
git repository. If any of these is changed, it should be updated in git, and then the updates
copied to 1lilypond-extra.

Grand Unified Builder (GUB)

Another item of interest might be the Grand Unified Builder, our cross-platform building tool.
Since it is used by other projects as well, it is not stored in our gub repository. For more info,
see http://lilypond.org/gub.

There are two locations for this repository: the version being used to build lilypond, which
is at
http://github.com/gperciva/gub
and the original version by Jan Nieuwenhuizen, kept at

http://github.com/janneke/gub

LilyPad
Our binary releases on MacOS X and Windows contain a lightweight text editor.
To make any modifications the Windows editor, you will need to do the following:
1. Clone the git repository from https://github.com/gperciva/lilypad

2. Make changes to the source, and check it compiles. In a Windows environment MinGW
provides both a Git installation and a gcc compiler. This can be obtained from
http://www.mingw.org/

3. Update the version which is contained in the rsrc.rc. Check this compiles, too.
4. Commit the changes with an informative commit message.
5. Push the changes to github. You will need to use syntax similiar to this:
git push https://UserName@github.com/gperciva/lilypad.git
You will need to have push access to the git repository for this to be successful.

6. Make a tarball of the source code to be used by GUB by pulling the updated repository
from GitHub. Ensure that the tarball has the correct Version number.

7. Copy the tarball to http://1lilypond.org/downloads/gub-sources/lilypad/. You will
need to have SSH access to 1ilypond.org. If you do not, contact the Release Manager via
the lilypond-devel mailing list.

8. Update GUB to make it use the new tarball by editing gub/specs/1lilypad.py and chang-
ing the source = line to point to the new source.

9. Push this updated lilypad.py version to the GUB repository on GitHub.
10. Test the changes with a new GUB compile.

https://github.com/gperciva/lilypond-extra
http://lilypond.org/gub
http://github.com/gperciva/gub
http://github.com/janneke/gub

Chapter 3: Working with source code 21

yet more repositories

There are a few other repositories floating around, which will hopefully be documented in the
near future.

3.2.4 Downloading remote branches

[Note: contains obsolete + misleading info J

Organization of remote branches

The main LilyPond repository is organized into branches to facilitate development. These are
often called remote branches to distinguish them from local branches you might create yourself
(see Section 3.3.3 [Using local branches|, page 24).

The master branch contains all the source files used to build LilyPond, which includes the
program itself (both stable and development releases), the documentation (and its translations),
and the website. Generally, the master branch is expected to compile successfully.

The translation branch is a side branch that allows translators to work without needing
to worry about compilation problems. Periodically, the Translation Meister (after verifying
that it doesn’t break compilation), will merge this branch into staging to incorporate recent
translations. Similarly, the master branch is usually merged into the translation branch after
significant changes to the English documentation. See Section 5.9 [Translating the documenta-
tion], page 75, for details.

LilyPond repository sources

The recommended source for downloading a copy of the main repository is:
git://git.sv.gnu.org/lilypond.git
However, if your internet router filters out connections using the GIT protocol, or if you
experience difficulty connecting via GIT, you can try these other sources:
ssh://git.sv.gnu.org/srv/git/lilypond.git
http://git.sv.gnu.org/r/lilypond.git
The SSH protocol can only be used if your system is properly set up to use it. Also, the
HTTP protocol is slowest, so it should only be used as a last resort.

Downloading individual branches

[Note: obsolete, should be deleted!]

Once you have initialized an empty Git repository on your system (see [Initializing a reposi-
tory], page 15), you can download a remote branch into it. Make sure you know which branch
you want to start with.

To download the master branch, enter the following:
git remote add -ft master -m master \
origin git://git.sv.gnu.org/lilypond.git/
To download the translation branch, enter:

git remote add -ft translation -m \
translation origin git://git.sv.gnu.org/lilypond.git/

The git remote add process could take up to ten minutes, depending on the speed of your
connection. The output will be something like this:

Updating origin

Chapter 3: Working with source code 22

remote: Counting objects: 235967, done.

remote: Compressing objects: 100% (42721/42721), done.

remote: Total 235967 (delta 195098), reused 233311 (delta 192772)
Receiving objects: 100% (235967/235967), 68.37 MiB | 479 KiB/s, done.
Resolving deltas: 100% (195098/195098), done.

From git://git.sv.gnu.org/lilypond

* [new branch] master -> origin/master
From git://git.sv.gnu.org/lilypond
* [new tag] flower/1.0.1 -> flower/1.0.1
* [new tag] flower/1.0.10 -> flower/1.0.10
[new tag] release/2.9.6 -> release/2.9.6
[new tag] release/2.9.7 -> release/2.9.7

When git remote add is finished, the remote branch should be downloaded into your
repository—though not yet in a form that you can use. In order to browse the source code
files, you need to create and checkout your own local branch. In this case, however, it is easier
to have Git create the branch automatically by using the checkout command on a non-existent
branch. Enter the following:

git checkout -b branch origin/branch
where branch is the name of your tracking branch, either master or translation.
Git will issue some warnings; this is normal:

warning: You appear to be on a branch yet to be born.

warning: Forcing checkout of origin/master.

Branch master set up to track remote branch master from origin.
Already on 'master'

By now the source files should be accessible—you should be able to edit any files in the
$LILYPOND_GIT directory using a text editor of your choice. But don’t start just yet! Before
editing any source files, learn how to keep your changes organized and prevent problems later—
read Section 3.3 [Basic Git procedures], page 23.

Technical Details

The git remote add command should add some lines to your local repository’s .git/config
file:

[remote "origin"]
url = git://git.sv.gnu.org/lilypond.git/
fetch = +refs/heads/master:refs/remotes/origin/master

Downloading all remote branches
To download all remote branches at once, you can clone the entire repository:

git clone git://git.sv.gnu.org/lilypond.git

Other branches

Most contributors will never need to touch the other branches. If you wish to do so, you will
need more familiarity with Git; please see Section 3.7 [Other Git documentation|, page 43.

e dev/XYZ: These branches are for individual developers. They store code which is not yet
stable enough to be added to the master branch.

e stable/XYZ: The branches are kept for archival reasons.

e archive/XYZ: The branches are kept for archival reasons.

Chapter 3: Working with source code 23

3.3 Basic Git procedures

3.3.1 The Git contributor’s cycle

Here is a simplified view of the contribution process on Git:
1. Update your local repository by pulling the most recent updates from the remote repository.
2. Edit source files within your local repository’s working directory.
3. Commit the changes you’ve made to a local branch.
4.

Generate a patch to share your changes with the developers.

3.3.2 Pulling and rebasing

When developers push new patches to the git.sv.gnu.org repository, your local repository is
not automatically updated. It is important to keep your repository up-to-date by periodically
pulling the most recent commits from the remote branch. Developers expect patches to be as
current as possible, since outdated patches require extra work before they can be used.

Occasionally you may need to rework some of your own modifications to match changes made
to the remote branch (see Section 3.4.3 [Resolving conflicts|, page 31), and it’s considerably easier
to rework things incrementally. If you don’t update your repository along the way, you may
have to spend a lot of time resolving branch conflicts and reconfiguring much of the work you’ve
already done.

Fortunately, Git is able to resolve certain types of branch conflicts automatically with a
process called rebasing. When rebasing, Git tries to modify your old commits so they appear as
new commits (based on the latest updates). For a more involved explanation, see the git-rebase
man page.

To pull without rebasing (recommended for translators), use the following command:

git pull # recommended for translators

If you're tracking the remote master branch, you should add the -r option (short for
--rebase) to keep commits on your local branch current:

git pull -r # use with caution when translating

If you don’t edit translated documentation and don’t want to type —r every time, configure
the master branch to rebase by default with this command:

git config branch.master.rebase true
If pull fails because of a message like

error: Your local changes to 'Documentation/learning/tutorial.itely’
would be overwritten by merge. Aborting.

or

Documentation/learning/tutorial.itely: needs update
refusing to pull with rebase: your working tree is not up-to-date

it means that you have modified some files in you working tree without committing changes (see
Section 3.3.4 [Commits|, page 25); you can use the git stash command to work around this:

git stash # save uncommitted changes
git pull -r # pull using rebase (translators omit "-r")
git stash pop # reapply previously saved changes

Note that git stash pop will try to apply a patch, and this may create a conflict. If this
happens, see Section 3.4.3 [Resolving conflicts], page 31.

TODO: I think the next paragraph is confusing. Perhaps prepare the reader for new terms
‘committish’ and ‘head’? -mp

Chapter 3: Working with source code 24

()
Note: translators and documentation editors, if you have changed com-

mittishes in the head of translated files using commits you have not
yet pushed to git.sv.gnu.org, please do not rebase. If you want to
avoid wondering whether you should rebase each time you pull, please
always use committishes from master and/or translation branch on
git.sv.gnu.org, which in particular implies that you must push your
changes to documentation except committishes updates (possibly after

having rebased), then update the committishes and push them.
N J

TODO: when committishes automatic conditional update have been tested and documented,
append the following to the warning above: Note that using update-committishes make target
generally touches committishes.

Technical details

The git config command mentioned above adds the line rebase = true to the master branch
in your local repository’s .git/config file:

[branch "master"]
remote = origin
merge = refs/heads/master
rebase = true

3.3.3 Using local branches

Creating and removing branches

Local branches are useful when you’re working on several different projects concurrently. To
create a new branch, enter:

git branch name
To delete a branch, enter:
git branch -d name

Git will ask you for confirmation if it sees that data would be lost by deleting the branch.
Use -D instead of -d to bypass this. Note that you cannot delete a branch if it is currently
checked out.

Listing branches and remotes
You can get the exact path or URL of all remote branches by running:
git remote -v
To list Git branches on your local repositories, run

git branch # list local branches only
git branch -r # list remote branches
git branch -a # list all branches

Checking out branches

To know the currently checked out branch, i.e. the branch whose source files are present in your
working tree, read the first line of the output of

git status
The currently checked out branch is also marked with an asterisk in the output of git branch.

You can check out another branch other_branch, i.e. check out other_branch to the working
tree, by running

git checkout other_branch

Chapter 3: Working with source code 25

Note that it is possible to check out another branch while having uncommitted changes, but
it is not recommended unless you know what you are doing; it is recommended to run git
status to check this kind of issue before checking out another branch.

Merging branches

To merge branch foo into branch bar, i.e. to “add” all changes made in branch foo to branch
bar, run

git checkout bar
git merge foo

If any conflict happens, see Section 3.4.3 [Resolving conflicts], page 31.

There are common usage cases for merging: as a translator, you will often want the Trans-
lations meister to merge master into translation; on the other hand, the Translations meister
wants to merge translation into staging whenever he has checked that translation builds
successfully.

3.3.4 Commits

Understanding commits

Technically, a commit is a single point in the history of a branch, but most developers use the
term to mean a commit object, which stores information about a particular revision. A single
commit can record changes to multiple source files, and typically represents one logical set of
related changes (such as a bug-fix). You can list the ten most recent commits in your current
branch with this command:

git log -10 --oneline
If you’re using an older version of Git and get an ‘unrecognized argument’ error, use this
instead:
git log -10 --pretty=oneline --abbrev-commit

More interactive lists of the commits on the remote master branch are available at http://
git.sv.gnu.org/gitweb/?p=1lilypond.git;a=shortlog and http://git.sv.gnu.org/cgit/
lilypond.git/log/.

How to make a commit

Once you have modified some source files in your working directory, you can make a commit
with the following procedure:

1. Make sure you've configured Git properly (see [Configuring Git], page 15). Check that your
changes meet the requirements described in Section 10.5 [Code style], page 115, and/or
Section 5.5 [Documentation policy], page 69. For advanced edits, you may also want to
verify that the changes don’t break the compilation process.

2. Run the following command:
git status

to make sure you’re on the right branch, and to see which files have been modified, added
or removed, etc. You may need to tell Git about any files you've added by running one of
these:

git add file # add untracked file individually
git add . # add all untracked files in current directory

After git add, run git status again to make sure you got everything. You may also need
to modify GNUmakefile.

http://git.sv.gnu.org/gitweb/?p=lilypond.git;a=shortlog
http://git.sv.gnu.org/gitweb/?p=lilypond.git;a=shortlog
http://git.sv.gnu.org/cgit/lilypond.git/log/
http://git.sv.gnu.org/cgit/lilypond.git/log/

Chapter 3: Working with source code 26

3. Preview the changes about to be committed (to make sure everything looks right) with:
git diff HEAD
The HEAD argument refers to the most recent commit on the currently checked-out branch.
4. Generate the commit with:
git commit -a
The -a is short for --—all which includes modified and deleted files, but only those newly
created files that have previously been added.

Commit messages

When you run the git commit -a command, Git automatically opens the default text editor
so you can enter a commit message. If you find yourself in a foreign editing environment, you're
probably in vi or vim. If you want to switch to an editor you’re more familiar with, quit by
typing :q! and pressing <Enter>. See [Configuring Git], page 15, for instructions on changing
the default editor.

In any case, Git will open a text file for your commit message that looks like this:

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#
#

modified: working.itexi

Your commit message should begin with a one-line summary describing the change (no more
than 50 characters long), and if necessary a blank line followed by several lines giving the details:

Doc: add Baerenreiter and Henle solo cello suites

Added comparison of solo cello suite engravings to new essay with
high-res images, fixed cropping on Finale example.

Commit messages often start with a short prefix describing the general location of the changes.

e Doc: and Doc-**: If a commit affects the documentation in English (or in several languages
simultaneously) the commit message should be prefixed with “Doc: ”. If the commit affects
only one of the translations, the commit message should be prefixed with “Doc-**: 7 where
** is the two-letter language code.

e Web: and Web-**: Commits that affect the website should use “Web: ” for English, and
“Web-**: 7 for other languages.

e (CSS: Commits that change CSS files should use “Web: CSS: ” or “Doc: CSS: ” depending
on whether they affect the website or the documentation/manuals.

e Changes to a single file are often prefixed with the name of the file involved.

Visit the links listed in [Understanding commits], page 25, for examples.

3.3.5 Patches

How to make a patch

If you want to share your changes with other contributors and developers, you need to generate
patches from your commits. We prefer it if you follow the instructions in Section 3.3.6 [Uploading
a patch for review], page 27. However, we present an alternate method here.

Chapter 3: Working with source code 27

You should always run git pull -r (translators should leave off the -r) before doing this
to ensure that your patches are as current as possible.

Once you have made one or more commits in your local repository, and pulled the most
recent commits from the remote branch, you can generate patches from your local commits with
the command:

git format-patch origin

The origin argument refers to the remote tracking branch at git.sv.gnu.org. This com-
mand generates a separate patch for each commit that’s in the current branch but not in the
remote branch. Patches are placed in the current working directory and will have names that
look something like this:

0001-Doc-Fix-typos.patch
0002-Web-Remove-dead-links.patch

Send an email (must be less than 64 KB) to lilypond-devel@gnu.org briefly
explaining your work, with the patch files attached. Translators should send patches to
translations@lilynet.net. After your patches are reviewed, the developers may push one or
more of them to the main repository or discuss them with you.

Emailing patches

The default x-diff MIME type associated with patch files (i.e., files whose name ends in .patch)
means that the encoding of line endings may be changed from UNIX to DOS format when they
are sent as attachments. Attempting to apply such an inadvertently altered patch will cause git
to fail with a message about ‘whitespace errors’.

The solution to such problems is surprisingly simple—just change the default file extension
of patches generated by git to end in .txt, for example:

git config format.suffix '.patch.txt'
This should cause email programs to apply the correct base64 encoding to attached patches.

If you receive a patch with DOS instead of UNIX line-endings, it can be converted back using
the dos2unix utility.

Lots of useful information on email complications with patches is provided on the Wine wiki
at http://wiki.winehq.org/GitWine.

3.3.6 Uploading a patch for review
Any non-trivial change should be uploaded to our “Rietveld” code review website:
http://codereview.appspot.com/

You can upload a patch for review by using our custom git-cl ‘helper-script’. This section
assumes you have already installed, updated, and configured git-cl. See Section 2.3 [git-cl],
page 9.

Note: Unless you are familiar with branches, only work on one set of
changes at once.

There are two methods, depending on your git setup.
e Master branch: (easy option)
If you added your patch to master, then:
git pull -r
git-cl upload origin/master

mailto:lilypond-devel@gnu.org
mailto:translations@lilynet.net
http://wiki.winehq.org/GitWine
http://codereview.appspot.com/

Chapter 3: Working with source code 28

If you have git push ability, make sure that you remove your patch (with git rebase or
git reset) before pushing other stuff.

Notifications of patches are automatically added to our issue tracker to reduce the chance of
patches getting lost. To suppress this (not recommended), add the -n / --no-code-issue
option.

e Separate branch: (complicated option)

Ensure your changes are committed in a separate branch, which should differ from the
reference branch to be used (usually origin/master) by just the changes to be uploaded.
Checkout the branch with the changes:

git checkout some-branch-with-changes

If the reference branch is to be origin/master, ensure that the branch containing the
changes is up-to-date with it. Use git rebase or git pull -r to rebase the branch to the
head of origin/master. For example:

git pull -r origin master
Finally, start the upload by entering:
git-cl upload <reference SHA1l ID>

where <reference SHA1 ID> is the SHA1 ID of the commit to be used as a reference source
for the patch. Generally, this will be the SHA1 ID of origin/master, and in that case you
can just use the command:

git-cl upload origin/master
First you will see a terminal editor where you can edit the message that will accompany your

patch. git-cl will respect the EDITOR environment variable if defined, otherwise it will use vi
as the default editor.

After prompting for your Google email address and password, the patch set will be posted
to Rietveld, and you will be given a URL for your patch.

Note: Some installations of git-cl fail when uploading a patch with
certain filename extensions. If this happens, it can generally be fixed
by editing the list of exceptions at top of git-cl.py.

Announcing your patch set

You should then announce the patch by logging into the code review issue webpage and using
“Publish + Mail Comments” to add a (mostly bogus) comment to your issue. The text of your
comment will be sent to our developer mailing list.

Note: There is no automatic notification of a new patch; you must add
a comment yourself.

Revisions

As revisions are made in response to comments, successive patch sets for the same issue can be
uploaded by reissuing the git-cl command with the modified branch checked out.

Sometimes in response to comments on revisions, the best way to work may require creation
of a new branch in git. In order to associate the new branch with an existing Rietveld issue, the
following command can be used:

git-cl issue issue-number

where issue-number is the number of the existing Rietveld issue.

Chapter 3: Working with source code 29

Resetting git-cl
If git-cl becomes confused, you can “reset” it by running:

git-cl issue O

3.3.7 The patch review cycle

Your patch will be available for reviews for the next few hours or days. Three times a week,
patches with no known problems are gathered into a “patch countdown” and their status changed
to patch-countdown. The countdown is a 48-hour waiting period in which any final reviews or
complaints should be made.

During the countdown, your patch may be set to patch-needs_work, indicating that you
should fix something (or at least discuss why the patch needs no modification). If no problems
are found, the patch will be set to patch-push.

Once a patch has patch-push, it should be sent to your mentor for uploading. If you have
git push ability, look at Section 3.4.10 [Pushing to staging], page 36.

e Patches get added to the tracker and to Rietveld by the “git-cl” tool, with a status of
“patch-new”.

e The automated tester, Patchy, verifies that the patch can be applied to current master. By
default, it checks that the patch allows make and make test to complete successfully. It
can also be configured to check that make doc is successful. If it passes, Patchy changes the
status to “patch-review” and emails the developer list. If the patch fails, Patchy sets it to
“patch-needs_work” and notifies the developer list.

e The Patch Meister reviews the tracker periodically, to list patches which have been on
review for at least 24 hours. The list is found at
http://code . google.com/p/lilypond/issues/list?can=2&q=label:patchj,20patch=review&
sort=modified+patch&colspec=ID}20Type%20Status20Priority%200wner’20Patchy20Summary?20Modified
e For each patch, the Handler reviews any discussion on the tracker and on Rietveld, to de-
termine whether the patch can go forward. If there is any indication that a developer thinks
the patch is not ready, the Handler marks it “patch-needs_work” and makes a comment
regarding the reason, referring to the Rietveld item if needed.

e Patches with explicit approval, or at least no negative comment, can be updated to “patch-
countdown”. When saving the tracker item, clear the “send email” box to prevent sending
notification for each patch.

e The Patch Meister sends an email to the developer list, with a fixed subject line, to enable
filtering by email clients:

PATCH: Countdown to 20130113

The text of the email sets the deadline for this countdown batch. At present, batches are
done on Tuesday, Thursday and Sunday evenings.

To create the countdown announcement, use the make-countdown-announcement . sh script,
which takes the deadline date, and optionally your name. Follow the instructions provided:

cd $LILYPOND_GIT
scripts/auxiliar/make-countdown-announcement.sh "Jan 1, 2001" James

The script produces an announcement that is easily readable in all email clients. Also,
whenever a new contributor submits a patch, you will be prompted to add the new user-
name and author name to the script itself, and then commit those changes to the main git
repository.

e On the scheduled countdown day, the Patch Meister reviews the previous list of patches on
countdown, with the same procedure and criteria as before. Patches with no controversy
can be set to “patch-push” with a courtesy message added to the comment block.

http://code.google.com/p/lilypond/issues/list?can=2&q=label:patch%20patch=review&sort=modified+patch&colspec=ID%20Type%20Status%20Priority%20Owner%20Patch%20Summary%20Modified
http://code.google.com/p/lilypond/issues/list?can=2&q=label:patch%20patch=review&sort=modified+patch&colspec=ID%20Type%20Status%20Priority%20Owner%20Patch%20Summary%20Modified

Chapter 3: Working with source code 30

e Roughly at six month intervals, the Patch Meister can list the patches which have been
set to “patch-needs-work” and send the results to the developer list for review. In most
cases, these patches should be marked “patch-abandoned” but this should come from the
developer if possible.

e Asin most organisations of unpaid volunteers, fixed procedures are useful in as much as they
get the job done. In our community, there is room for senior developers to bypass normal
patch handling flows, particularly now that the testing of patches is largely automated.
Similarly, the minimum age of 24 hours can reasonably be waived if the patch is minor and
from an experienced developer.

3.4 Advanced Git procedures

Note: This section is not necessary for normal contributors; these com-
mands are presented for information for people interested in learning
more about git.

It is possible to work with several branches on the same local Git repository; this is especially
useful for translators who may have to deal with both translation and a stable branch, e.g.
stable/2.12.

Some Git commands are introduced first, then a workflow with several Git branches of
LilyPond source code is presented.

3.4.1 Merge conflicts

To be filled in later, and/or moved to a different section. I just wanted to make sure that I had
a stub ready somewhere.

3.4.2 Advanced Git concepts

A bit of Git vocabulary will be explained below. The following is only introductory; for a better
understanding of Git concepts, you may wish to read Section 3.7 [Other Git documentation],
page 43.
The git pull origin command above is just a shortcut for this command:
git pull git://git.sv.gnu.org/lilypond.git/ branch:origin/branch
where branch is typically master or translation; if you do not know or remember, see

Section 3.2.4 [Downloading remote branches], page 21, to remember which commands you issued
or which source code you wanted to get.

A commit is a set of changes made to the sources; it also includes the committish of the parent
commit, the name and e-mail of the author (the person who wrote the changes), the name and
e-mail of the committer (the person who brings these changes into the Git repository), and a
commit message.

A committish is the SHA1 checksum of a commit, a number made of 40 hexadecimal digits,
which acts as the internal unique identifier for this commit. To refer to a particular revision,
don’t use vague references like the (approximative) date, simply copy and paste the committish.

A branch is nothing more than a pointer to a particular commit, which is called the head
of the branch; when referring to a branch, one often actually thinks about its head and the
ancestor commits of the head.

Now we will explain the two last commands you used to get the source code from Git—see
[Downloading individual branches], page 21.

git remote add -ft branch -m branch \

Chapter 3: Working with source code 31

origin git://git.sv.gnu.org/lilypond.git/

git checkout -b branch origin/branch

The git remote has created a branch called origin/branch in your local Git repository.
As this branch is a copy of the remote branch web from git.sv.gnu.org LilyPond repository, it is
called a remote branch, and is meant to track the changes on the branch from git.sv.gnu.org: it
will be updated every time you run git pull origin or git fetch origin.

The git checkout command has created a branch named branch. At the beginning, this
branch is identical to origin/branch, but it will differ as soon as you make changes, e.g. adding
newly translated pages or editing some documentation or code source file. Whenever you pull,
you merge the changes from origin/branch and branch since the last pulling. If you do not have
push (i.e. “write”) access on git.sv.gnu.org, your branch will always differ from origin/branch.
In this case, remember that other people working like you with the remote branch branch of
git://git.sv.gnu.org/lilypond.git/ (called origin/branch on your local repository) know nothing
about your own branch: this means that whenever you use a committish or make a patch, others
expect you to take the latest commit of origin/branch as a reference.

Finally, please remember to read the man page of every Git command you will find in this
manual in case you want to discover alternate methods or just understand how it works.

3.4.3 Resolving conflicts

Occasionally an update may result in conflicts — this happens when you and somebody else have
modified the same part of the same file and git cannot figure out how to merge the two versions
together. When this happens, you must manually merge the two versions.

If you need some documentation to understand and resolve conflicts, see paragraphs How
conflicts are presented and How to resolve conflicts in git merge man page.

If all else fails, you can follow the instructions in Section 3.4.4 [Reverting all local changes],
page 31. Be aware that this eliminates any changes you have made!

3.4.4 Reverting all local changes

Sometimes git will become hopelessly confused, and you just want to get back to a known, stable
state. This command destroys any local changes you have made in the currently checked-out
branch, but at least you get back to the current online version:

git reset --hard origin/master

3.4.5 Working with remote branches

Fetching new branches from git.sv.gnu.org
To fetch and check out a new branch named branch on git.sv.gnu.org, run from top of the Git
repository

git config --add remote.origin.fetch \
+refs/heads/branch:refs/remotes/origin/branch

git checkout --track -b branch origin/branch
After this, you can pull branch from git.sv.gnu.org with:
git pull
Note that this command generally fetches all branches you added with git remote add
(when you initialized the repository) or git config --add, i.e. it updates all remote branches
from remote origin, then it merges the remote branch tracked by the current branch into the
current branch. For example, if your current branch is master, origin/master will be merged
into master.

Chapter 3: Working with source code 32

Local clones, or having several working trees

If you play with several Git branches, e.g. master, translation, stable/2.12), you may want
to have one source and build tree for each branch; this is possible with subdirectories of your
local Git repository, used as local cloned subrepositories. To create a local clone for the branch
named branch, run

git checkout branch
git clone -1lsn . subdir
cd subdir

git reset --hard

Note that subdir must be a directory name which does not already exist. In subdir, you
can use all Git commands to browse revisions history, commit and uncommit changes; to update
the cloned subrepository with changes made on the main repository, cd into subdir and run
git pull; to send changes made on the subrepository back to the main repository, run git push
from subdir. Note that only one branch (the currently checked out branch) is created in the
subrepository by default; it is possible to have several branches in a subrepository and do usual
operations (checkout, merge, create, delete...) on these branches, but this possibility is not
detailed here.

When you push branch from subdir to the main repository, and branch is checked
out in the main repository, you must save uncommitted changes (see git stash) and do
git reset --hard in the main repository in order to apply pushed changes in the working
tree of the main repository.

3.4.6 Git log

The commands above don’t only bring you the latest version of the sources, but also the full
history of revisions (revisions, also called commits, are changes made to the sources), stored in
the .git directory. You can browse this history with

git log # only shows the logs (author, committish and commit message)
git log -p # also shows diffs
gitk # shows history graphically

Note: The gitk command may require a separate gitk package, avail-
able in the appropriate distribution’s repositories.

3.4.7 Applying remote patches

TODO: Explain how to determine if a patch was created with git format-patch.

Well-formed git patches created with git format-patch should be committed with the fol-
lowing command:

git am patch

Patches created without git format-patch can be applied in two steps. The first step is to

apply the patch to the working tree and the index:

git apply --index patch
The second step is to commit the changes and give credit to the author of the patch. This can
be done with the following command:

git commit --author="John Smith <john@example.com>"

Please note that using the --index option for patching is quite important here and cannot
reliably be replaced by using the -a option when committing: that would only commit files
from the working tree that are already registered with git, so every file that the patch actually
adds, like a regtest for a fixed bug, would get lost. For the same reason, you should not use the
git-independent ‘patch’ program for applying patches.

Chapter 3: Working with source code 33

3.4.8 Cleaning up multiple patches

If you have been developing on your own branch for a while, you may have more commmits than
is really sensible. To revise your work and condense commits, use:

git rebase origin/master
git rebase -i origin/master

Note: Be a bit cautious — if you completely remove commits during the
interactive session, you will... err... completely remove those commits.

3.4.9 Commit access

Most contributors are not able to commit patches directly to the main repository—only mem-
bers of the LilyPond development team have commit access. If you are a contributor and are
interested in joining the development team, contact the Project Manager through the mailing list
(1ilypond-devel@gnu.org). Generally, only contributors who have already provided a number
of patches which have been pushed to the main repository will be considered for membership.

If you have been approved by the Project Manager, use the following procedure to obtain
commit access:

1. If you don’t already have one, set up a Savannah user account at https://savannah.gnu.
org/account/register.php. If your web browser responds with an “untrusted connection”
message when you visit the link, follow the steps for including the CAcert root certificate
in your browser, given at http://savannah.gnu.org/tls/tutorial/.

Note: Savannah will silently put your username in lower-case — do
not try to use capital letters.

2. After registering, if you are not logged in automatically, login at https://savannah.gnu.
org/account/login.php—this should take you to your “my” page (https://savannah.
gnu.org/my/).

3. Click on the “My Groups” link to access the “My Group Membership” page. From there,
find the “Request for Inclusion” box and search for “LilyPond”. Among the search results,
check the box labeled “GNU LilyPond Music Typesetter” and write a brief (required)
message for the Project Manager (“Hey it’s me!” should be fine).

Note that you will not have commit access until the Project Manager activates your mem-
bership. Once your membership is activated, LilyPond should appear under the heading
“Groups I'm Contributor of” on your “My Group Membership” page.

4. Generate an SSH ‘rsa’ key pair. Enter the following at the command prompt:
ssh-keygen -t rsa

When prompted for a location to save the key, press <KENTER> to accept the default location
(7/.ssh/id_rsa).

Next you are asked to enter an optional passphrase. On most systems, if you use a
passphrase, you will likely be prompted for it every time you use git push or git pull.
You may prefer this since it can protect you from your own mistakes (like pushing when
you mean to pull), though you may find it tedious to keep re-entering it.

You can change/enable/disable your passphrase at any time with:

ssh-keygen -f ~/.ssh/id_rsa -p

Note that the GNOME desktop has a feature which stores your passphrase for you for
an entire GNOME session. If you use a passphrase to “protect you from yourself”’, you

mailto:lilypond-devel@gnu.org
https://savannah.gnu.org/account/register.php
https://savannah.gnu.org/account/register.php
http://savannah.gnu.org/tls/tutorial/
https://savannah.gnu.org/account/login.php
https://savannah.gnu.org/account/login.php
https://savannah.gnu.org/my/
https://savannah.gnu.org/my/

Chapter 3: Working with source code 34

will want to disable this feature, since you’ll only be prompted once. Run the following
command, then logout of GNOME and log back in:

gconftool-2 --set -t bool \
/apps/gnome-keyring/daemon-components/ssh false

After setting up your passphrase, your private key is saved as ~/.ssh/id_rsa and your
public key is saved as “/.ssh/id_rsa.pub.

5. Register your public SSH ‘rsa’ key with Savannah. From the “My Account Configuration”
page, click on “Edit SSH Keys”, then paste the contents of your ~/.ssh/id_rsa.pub file
into one of the “Authorized keys” text fields, and click “Update”.

Savannah should respond with something like:
Success: Key #1 seen Keys registered

6. Configure Git to use the SSH protocol (instead of the GIT protocol). From your local Git
repository, enter:
git config remote.origin.url \
ssh://user@git.sv.gnu.org/srv/git/lilypond.git
replacing user with your Savannah username.
7. After your membership has been activated and you’ve configured Git to use SSH, test the
connection with:
git pull --verbose
SSH should issue the following warning;:
The authenticity of host 'git.sv.gnu.org (140.186.70.72)"' can't
be established.
RSA key fingerprint is
80:5a:b0:0c:ec:93:66:29:49:7e:04:2b:fd:ba:2c:d5.

Are you sure you want to continue connecting (yes/no)?

Make sure the RSA key fingerprint displayed matches the one above. If it doesn’t, respond
“no” and check that you configured Git properly in the previous step. If it does match,
respond “yes”. SSH should then issue another warning:

Warning: Permanently added 'git.sv.gnu.org,140.186.70.72' (RSA) to
the list of known hosts.

The list of known hosts is stored in the file ~/.ssh/known_hosts.

At this point, you are prompted for your passphrase if you have one, then Git will attempt
a pull.

If git pull --verbose fails, you should see error messages like these:

Permission denied (publickey).
fatal: The remote end hung up unexpectedly

If you get the above error, you may have made a mistake when registering your SSH key at
Savannah. If the key is properly registered, you probably just need to wait for the Savannah
server to activate it. It usually takes a few minutes for the key to be active after registering
it, but if it still doesn’t work after an hour, ask for help on the mailing list.

If git pull --verbose succeeds, the output will include a ‘From’ line that shows ‘ssh’ as
the protocol:

From ssh://git.sv.gnu.org/srv/git/lilypond

If the protocol shown is not ‘ssh’, check that you configured Git properly in the previous
step.

Chapter 3: Working with source code 35

8. Test your commit access with a dry run:

Note: Do not push directly to master; instead, push to staging. See
Section 3.4.10 [Pushing to staging], page 36.

git push --dry-run --verbose

Note that recent versions of Git (Git 1.6.3 or later) will issue a big warning if the above
command is used. The simplest solution is to tell Git to push all matching branches by
default:

git config push.default matching
Then git push should work as before. For more details, consult the git push man page.

9. Repeat the steps from generating an RSA key through to testing your commit access, for
each machine from which you will be making commits, or you may simply copy the files
from your local ~/.ssh folder to the same folder on the other machine.

Technical details

e On Firefox, to view or remove the CAcert root certificate, go to: Edit > Preferences >
Advanced > Encryption > View Certificates > Authorities > Certificate Name > Root CA >
CA Cert Signing Authority.

e The git config commands above should modify your local repository’s .git/config file.
These lines:

[remote "origin"]
url = git://git.sv.gnu.org/lilypond.git/

should now be changed to:

[remote "origin"]
url = ssh://user@git.sv.gnu.org/srv/git/lilypond.git

where user is your login name on Savannah.

e Similarly, the git config push.default matching command should add these lines to
.git/config:
[push]
default = matching

Known issues and warnings

Encryption protocols, including ssh, generally do not permit packet fragmentation to avoid
introducing a point of insecurity. This means that the maximum packet size must not exceed
the smallest MTU (Maximum Transmission Unit) set in the routers along the path. This smallest
MTU is determined by a procedure during call set-up which relies on the transmission over the
path of ICMP packets. If any of the routers in the path block ICMP packets this mechanism
fails, resulting in the possibility of packets being transmitted which exceed the MTU of one of
the routers. If this happens the packet is discarded, causing the ssh session to hang, timeout or
terminate with the error message

ssh: connect to host <host ip addr> port 22: Bad file number
fatal: The remote end hung up unexpectedly

depending on precisely when in the proceedings the first large packet is transmitted. Most
routers on the internet have MTU set to 1500, but routers installed in homes to connect via
broadband may use a slightly smaller MTU for efficient transmission over ATM. If this problem
is encountered a possible work-around is to set the MTU in the local router to 1500.

Chapter 3: Working with source code 36

3.4.10 Pushing to staging
Do not push directly to the git master branch. Instead, push to staging.

You will not see your patch on origin/master until some automatic tests have been run.
These tests are run every couple of hours; please wait at least 12 hours before wondering if your
patch has been lost. Note that you can check the commits on origin/staging by looking at
the git web interface on savannah.

It may happen occasionally that the staging branch breaks automated testing. In this case
the automatic move of staging material to master gets halted in order to avoid broken material
entering master. This is a safety net. Please do not try breaking out from it by adding fixes
on top of staging: in that case the whole sequence will end up in master after all, defeating the
purpose of the system. The proper fix usually involves rewriting the staging branch and is best
left to core developers after discussion on the developer list.

Before pushing to staging it is a good practice to check whether staging is ahead of master,
and if so, wait until master has caught up with staging before pushing. This simplifies things if
changes to staging have to be backed out for some reason. To check whether master has caught
up with staging you can look at the git web interface on savannah, or do:

git fetch
gitk
and check that origin/master is at the same commit as origin/staging. Another option
is to see if any commits are listed when you do:
git fetch

git log origin/master..origin/staging

If your work is in a patch file

Assuming that your patch is in a file called 0001-my-patch.patch (see Section 3.3.5 [Patches],
page 26), and you are currently on git master, do:

git checkout staging

git pull -r
git am 0001-my-patch.patch
gitk

git push origin staging
git checkout master

Note: Do not skip the gitk step; a quick 5-second check of the visual
history can save a great deal of frustration later on. You should only
see that staging is only 1 commit ahead of origin/staging.

If your work is in a branch

If you are working on branches and your work is in my_branch_name, then do:

git checkout my_branch_name
git pull -r origin staging
This will rebase your branch on origin/staging. At this point git will let you know if there
are any conflicts. If so, resolve them before continuing:
gitk
git push origin HEAD:staging

Chapter 3: Working with source code 37

Note: Do not skip the gitk step; a quick 5-second check of the visual
history can save a great deal of frustration later on. You should see that
my_branch_name is only ahead of origin/staging by the commits from
your branch.

3.5 Git on Windows

Note: We heavily recommend that development be done with our virtual
machine Section 2.1 [LilyDev], page 5.

TODO: Decide what to do with this... Pare it down? Move paragraphs next to analogous
Unix instructions? -mp

3.5.1 Background to nomenclature

Git is a system for tracking the changes made to source files by a distributed set of editors. It is
designed to work without a master repository, but we have chosen to have a master repository
for LilyPond files. Editors hold a local copy of the master repository together with any changes
they have made locally. Local changes are held in a local ‘branch’, of which there may be several,
but these instructions assume you are using just one. The files visible in the local repository
always correspond to those on the currently ‘checked out’ local branch.

Files are edited on a local branch, and in that state the changes are said to be ‘unstaged’.
When editing is complete, the changes are moved to being ‘staged for commit’, and finally the
changes are ‘committed’ to the local branch. Once committed, the changes (called a ‘commit’)
are given a unique 40-digit hexadecimal reference number called the ‘Committish’ or ‘SHA1 ID’
which identifies the commit to Git. Such committed changes can be sent to the master repository
by ‘pushing’ them (if you have write permission) or by sending them by email to someone who
has, either as a complete file or as a ‘diff” or ‘patch’ (which send just the differences from the
master repository).

3.5.2 Installing git
Obtain Git from https://git-for-windows.github.io/.

Note that most users will not need to install SSH. That is not required until you have been
granted direct push permissions to the master git repository.

Start Git by clicking on the desktop icon. This will bring up a command line bash shell.
This may be unfamiliar to Windows users. If so, follow these instructions carefully. Commands
are entered at a $ prompt and are terminated by keying a newline.

3.5.3 Initialising Git

Decide where you wish to place your local Git repository, creating the folders in Windows as
necessary. Here we call the folder to contain the repository [path] /Git, but if you intend using
Git for other projects a directory name like 1ilypond-git might be better. You will need to
have space for around 100Mbytes.

Start the Git bash shell by clicking on the desk-top icon installed with Git and type
cd [path]/Git

to position the shell at your new Git repository.

Note: if [path] contains folders with names containing spaces use
cd "[path]/Git"

Then type
git init

https://git-for-windows.github.io/

Chapter 3: Working with source code 38

to initialize your Git repository.
Then type (all on one line; the shell will wrap automatically)

git remote add -ft master origin git://git.sv.gnu.org/lilypond.git
to download the lilypond master files.

Note: Be patient! Even on a broadband connection this can take 10
minutes or more. Wait for lots of [new tag] messages and the $ prompt.

We now need to generate a local copy of the downloaded files in a new local branch. Your
local branch needs to have a name. It is usual to call it ‘master’ and we shall do that here.

To do this, type
git checkout -b master origin/master

This creates a second branch called ‘master’. You will see two warnings (ignore these), and
a message advising you that your local branch ‘master’ has been set up to track the remote
branch. You now have two branches, a local branch called ‘master’, and a tracking branch
called ‘origin/master’, which is a shortened form of ‘remotes/origin/master’.

Return to Windows Explorer and look in your Git repository. You should see lots of folders.
For example, the LilyPond documentation can be found in [path]/Git/Documentation/.

The Git bash shell is terminated by typing exit or by clicking on the usual Windows close-
window widget.

3.5.4 Git GUI

Almost all subsequent work will use the Git Graphical User Interface, which avoids having to
type command line commands. To start Git GUI first start the Git bash shell by clicking on
the desktop icon, and type

cd [pathl]/Git

git gui

The Git GUI will open in a new window. It contains four panels and 7 pull-down menus. At

this stage do not use any of the commands under Branch, Commit, Merge or Remote. These
will be explained later.

The top panel on the left contains the names of files which you are in the process of editing
(Unstaged Changes), and the lower panel on the left contains the names of files you have finished
editing and have staged ready for committing (Staged Changes). At present, these panels will
be empty as you have not yet made any changes to any file. After a file has been edited and
saved the top panel on the right will display the differences between the edited file selected in
one of the panels on the left and the last version committed on the current branch.

The panel at bottom right is used to enter a descriptive message about the change before
committing it.

The Git GUI is terminated by entering CNTL-Q while it is the active window or by clicking
on the usual Windows close-window widget.

3.5.5 Personalising your local git repository
Open the Git GUI, click on
Edit -> Options
and enter your name and email address in the left-hand (Git Repository) panel. Leave
everything else unchanged and save it.

Note that Windows users must leave the default setting for line endings unchanged. All files
in a git repository must have lines terminated by just a LF, as this is required for Merge to work,

Chapter 3: Working with source code 39

but Windows files are terminated by CRLF by default. The git default setting causes the line
endings of files in a Windows git repository to be flipped automatically between LF and CRLF
as required. This enables files to be edited by any Windows editor without causing problems in
the git repository.

3.5.6 Checking out a branch

At this stage you have two branches in your local repository, both identical. To see them click
on

Branch -> Checkout

You should have one local branch called ‘master’ and one tracking branch called ‘ori-
gin/master’. The latter is your local copy of the ‘remotes/origin/master’ branch in the master
LilyPond repository. The local ‘master’ branch is where you will make your local changes.

When a particular branch is selected, i.e., checked out, the files visible in your repository are
changed to reflect the state of the files on that branch.

3.5.7 Updating files from ‘remote/origin/master’

Before starting the editing of a file, ensure your local repository contains the latest version of
the files in the remote repository by first clicking

Remote -> Fetch from -> origin
in the Git GUL

This will place the latest version of every file, including all the changes made by others, into
the ‘origin/master’ branch of the tracking branches in your git repository. You can see these
files by checking out this branch, but you must never edit any files while this branch is checked
out. Check out your local ‘master’ branch again.

You then need to merge these fetched files into your local ‘master’ branch by clicking on
Merge -> Local Merge
and if necessary select the local ‘master’ branch.

Note that a merge cannot be completed if you have made any local changes which have not
yet been committed.

This merge will update all the files in the ‘master’ branch to reflect the current state of
the ‘origin/master’ branch. If any of the changes conflict with changes you have made yourself
recently you will be notified of the conflict (see below).

3.5.8 Editing files

First ensure your ‘master’ branch is checked out, then simply edit the files in your local Git
repository with your favourite editor and save them back there. If any file contains non-ASCII
characters ensure you save it in UTF-8 format. Git will detect any changes whenever you restart
Git GUI and the file names will then be listed in the Unstaged Changes panel. Or you can click
the Rescan button to refresh the panel contents at any time. You may break off and resume
editing any time.

The changes you have made may be displayed in diff form in the top right-hand panel of Git
GUI by clicking on the file name shown in one of the left panels.

When your editing is complete, move the files from being Unstaged to Staged by clicking the
document symbol to the left of each name. If you change your mind it can be moved back by
clicking on the ticked box to the left of the name.

Finally the changes you have made may be committed to your ‘master’ branch by entering a
brief message in the Commit Message box and clicking the Commit button.

Chapter 3: Working with source code 40

If you wish to amend your changes after a commit has been made, the original version and
the changes you made in that commit may be recovered by selecting

Commit -> Amend Last Commit

or by checking the Amend Last Commit radio button at bottom right. This will return the
changes to the Staged state, so further editing made be carried out within that commit. This
must only be done before the changes have been Pushed or sent to your mentor for Pushing -
after that it is too late and corrections have to be made as a separate commit.

3.5.9 Sending changes to ‘remotes/origin/master’

If you do not have write access to ‘remotes/origin/master’ you will need to send your changes
by email to someone who does.

First you need to create a diff or patch file containing your changes. To create this, the file
must first be committed. Then terminate the Git GUIL. In the git bash shell first cd to your Git
repository with

cd [path]/Git

if necessary, then produce the patch with

git format-patch origin

This will create a patch file for all the locally committed files which differ from ‘origin/master’.
The patch file can be found in [path]/Git and will have a name formed from the commit message.

3.5.10 Resolving merge conflicts

As soon as you have committed a changed file your local master branch has diverged
from origin/master, and will remain diverged until your changes have been committed in
remotes/origin/master and Fetched back into your origin/master branch. Similarly, if a
new commit has been made to remotes/origin/master by someone else and Fetched, your
local master branch is divergent. You can detect a divergent branch by clicking on

Repository -> Visualise all branch history
This opens up a very useful new window called ‘gitk’. Use this to browse all the commits
made by yourself and others.

If the diagram at top left of the resulting window does not show your master tag on the
same node as the remotes/origin/master tag your branch has diverged from origin/master.
This is quite normal if files you have modified yourself have not yet been Pushed to
remotes/origin/master and Fetched, or if files modified and committed by others have been
Fetched since you last Merged origin/master into your local master branch.

If a file being merged from origin/master differs from one you have modified in a way that
cannot be resolved automatically by git, Merge will report a Conflict which you must resolve by
editing the file to create the version you wish to keep.

This could happen if the person updating remotes/origin/master for you has added some
changes of his own before committing your changes to remotes/origin/master, or if someone
else has changed the same file since you last fetched the file from remotes/origin/master.

Open the file in your editor and look for sections which are delimited with ...

[to be completed when I next have a merge conflict to be sure I give the right instructions
-td]

3.5.11 Other actions

The instructions above describe the simplest way of using git on Windows. Other git facilities
which may usefully supplement these include

e Using multiple local branches (Create, Rename, Delete)

Chapter 3: Working with source code 41

Resetting branches

Cherry-picking commits

Pushing commits to remote/origin/master

Using gitk to review history

Once familiarity with using git on Windows has been gained the standard git manuals can
be used to learn about these.

3.6 Repository directory structure

Prebuilt Documentation and packages are available from:
http://www.lilypond.org

LilyPond development is hosted at:
http://savannah.gnu.org/projects/lilypond

Here is a simple explanation of the directory layout for

LilyPond's source files.

Toplevel READMEs, Changelog,
build bootstrapping, patches
for third party programs

INDIVIDUAL CHAPTERS FOR EACH MANUAL:
Note: "Snippets" and "Internals Reference'" are

-- Documentation/ Top sources for most of the manuals

I

I

I

I

| auto-generated during the Documentation Build process.
I

| -- contributor/ Contributor's Guide

|-- essay/ Essay on automated music engraving

|-- extending/ Extending the functionality of LilyPond

| -— notation/ Notation Reference

| -- usage/ Runnning the programs that come with LilyPond
|- web/ The website

I
| TRANSLATED MANUALS:

| Each language's directory can contain...

I 1) translated versions of:

| * top sources for manuals

I * individual chapters for each manual

I 2) a texidocs/ directory for snippet translations

|-- ca/ Catalan

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |-- learning/ Learning Manual
|
|
|
|
|
|
|
|
|
|
|
|
|
| |-- cs/ Czech

Chapter 3: Working with source code

|-- de/
|-- es/
|-- fr/
|-- hu/
|-- it/
|-- ja/
|-- nl/
|-- pt/
|-- zh/

German
Spanish
French
Hungarian
Italian
Japanese
Dutch
Portuguese
Chinese

| MISCELLANEQUS DOC STUFF:

|-- css/
| -- included/
|-- logo/

|-- ly-examples/

|-- misc/

| -- pictures/
| ~-- pdf/
|-- po/

| -- snippets/
| “-- new/
-- topdocs/

C++ SOURCES:

flower/
lily/

LIBRARIES:

ly/
mf/
ps/
scm/
tex/

SCRIPTS:

config/
python/

“-- auxiliar/
scripts/

|-- auxiliar/
“-- build/

BUILD PROCESS:

CSS files for HTML docs

.1y files used in the manuals

Web logo and "note" icon

.1y files for the "Examples" webpage
01d announcements, Changelogs and NEWS
Images used (eps/jpg/png/svg)

(paf)

Translated build/maintenance scripts
Auto-generated from the LSR and from ./new/
Snippets too new for the LSR

AUTHORS, INSTALL, README

A simple C++ library
C++ sources for the LilyPond binary

.1y \include files

MetaFont sources for Emmentaler fonts

PostScript library files

Scheme sources for LilyPond and subroutine files
TeX and texinfo library files

Autoconf helpers for configure script
Python modules, MIDI module

Python modules for build/maintenance
End-user scripts (--> lilypond/usr/bin/)
Maintenance and non-essential build scripts
Essential build scripts

42

Chapter 3: Working with source code

(also see SCRIPTS section above)

make/ Specific make subroutine files
stepmake/ Generic make subroutine files

REGRESSION TESTS:

input/
“-- regression/ .1y regression tests
|-- abc2ly/ .abc regression tests
|-- 1lilypond-book/ 1lilypond-book regression tests
|-- midi/ midi2ly regression tests
“—-- musicxml/ .xml and .itexi regression tests
MISCELLANEQOUS:
elisp/ Emacs LilyPond mode and syntax coloring
vim/ Vi(M) LilyPond mode and syntax coloring
po/ Translations for binaries and end-user scripts

3.7 Other Git documentation

Official git man pages: http://www.kernel.org/pub/software/scm/git/docs/

e More in-depth tutorials: http://git-scm.com/documentation
e Book about git: Pro Git (http://progit.org/)

Github help: http://help.github.com/ (very highly recommended by Graham)

43

http://www.kernel.org/pub/software/scm/git/docs/
http://git-scm.com/documentation
http://progit.org/
http://help.github.com/

44

4 Compiling
This chapter describes the process of compiling the LilyPond program from source files.

4.1 Overview of compiling

Compiling LilyPond from source is an involved process, and is only recommended for developers
and packagers. Typical program users are instead encouraged to obtain the program from a
package manager (on Unix) or by downloading a precompiled binary configured for a specific
operating system. Pre-compiled binaries are available on the Section “Download” in General
Information page.

Compiling LilyPond from source is necessary if you want to build, install, or test your own
version of the program.

A successful compile can also be used to generate and install the documentation, incorpo-
rating any changes you may have made. However, a successful compile is not a requirement
for generating the documentation. The documentation can be built using a Git repository in
conjunction with a locally installed copy of the program. For more information, see [Building
documentation without compiling], page 55.

Attempts to compile LilyPond natively on Windows have been unsuccessful, though a
workaround is available (see Section “LilyDev” in Contributor’s Guide).

4.2 Requirements

4.2.1 Requirements for running LilyPond

This section contains the list of separate software packages that are required to run LilyPond.
e DejaVu fonts (http://www.dejavu-fonts.org/) These are normally installed by default.
e FontConfig (http://www.fontconfig.org/) Use version 2.4.0 or newer.
e Freetype (http://www.freetype.org/) Use version 2.1.10 or newer.
e Ghostscript (http://www.ghostscript.com) Use version 8.60 or newer.

e Guile (http://www.gnu.org/software/guile/guile.html) Use version 1.8.8. Version 2.x
of Guile is not currently supported.

e Pango (http://www.pango.org/) User version 1.12 or newer.
e Python (http://www.python.org) Use version 2.4 or newer.
e International fonts. For example:

Fedora:

fonts-arabic
fonts-hebrew
fonts-ja
fonts—-xorg-truetype
taipeifonts
ttfonts-ja
ttfonts-zh_CN

Debian based distributions:
emacs-intl-fonts
fonts-ipafont-gothic
fonts-ipafont-mincho
xfonts-bolkhov-75dpi
xfonts-cronyx-75dpi

http://www.dejavu-fonts.org/
http://www.fontconfig.org/
http://www.freetype.org/
http://www.ghostscript.com
http://www.gnu.org/software/guile/guile.html
http://www.pango.org/
http://www.python.org

Chapter 4: Compiling 45

xfonts-cronyx-100dpi
xfonts-intl-.*

These are normally installed by default and are required only to create music with interna-
tional text or lyrics.

4.2.2 Requirements for compiling LilyPond

This section contains instructions on how to quickly and easily get all the software packages
required to build LilyPond.

Most of the more popular Linux distributions only require a few simple commands to down-
load all the software needed. For others, there is an explicit list of all the individual packages
(as well as where to get them from) for those that are not already included in your distributions’
own repositories.

Fedora

The following instructions were tested on ‘Fedora’ versions 22 & 23 and will download all the
software required to both compile LilyPond and build the documentation.

e Download and install all the LilyPond build-dependencies (approximately 700MB);
sudo dnf builddep lilypond --nogpgcheck

e Download and install additional ‘build’ tools required for compiling;
sudo dnf install autoconf gcc-c++

e Download texi2html 1.82 directly from: http://download . savannah . gnu . org/
releases/texi2html/texi2html-1.82.tar.gz;

texi2html is only required if you intend to compile LilyPond’s own documentation (e.g. to
help with any document writing). The version available in the Fedora repositories is too
new and will not work. Extract the files into an appropriate location and then run the
commands;

./configure
make
sudo make install

This should install texi2html 1.82 into /usr/local/bin, which will normally take prior-
ity over /usr/bin where the later, pre-installed versions gets put. Now verify that your
operating system is able to see the correct version of texi2html.

texi2html --version

e Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.

sudo dnf install git
Also see Section “Starting with Git” in Contributor’s Guide.
e To use the 1ily-git.tcl GUI,
sudo dnf install tk

See Section “lily-git” in Contributor’s Guide.

http://download.savannah.gnu.org/releases/texi2html/texi2html-1.82.tar.gz
http://download.savannah.gnu.org/releases/texi2html/texi2html-1.82.tar.gz

Chapter 4: Compiling

()
Note: By default, when building LilyPond’s documentation, pdfTeX is

be used. However ligatures (fi, fl, ff etc.) may not be printed in the
PDF output. In this case XeTeX can be used instead. Download and
install the texlive-xetex package.

sudo dnf install texlive-xetex
The scripts used to build the LilyPond documentation will use XeTex

instead of pdfTex to generate the PDF documents if it is available. No

additional configuration is required.
- v

Linux Mint

The following instructions were tested on ‘Linux Mint 17.1° and ‘LMDE - Betsy’ and will down-
load all the software required to both compile LilyPond and build the documentation..

e Enable the sources repository;

1.

Using the Software Sources GUI (located under Administration).
2. Select Official Repositories.
3.

4. Click the Update the cache button and when it has completed, close the Software
Sources GUI.

e Download and install all the LilyPond build-dependencies (approximately 200MB);

Check the Enable source code repositories box under the Source Code section.

sudo apt-get build-dep lilypond

e Download and install additional ‘build’ tools required for compiling;

e Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to

sudo apt-get install autoconf fonts-texgyre texlive-lang-cyrillic

install git.

sudo apt-get install git

Also see Section “Starting with Git” in Contributor’s Guide.
e To use the 1lily-git.tcl GUI;

sudo apt-get install tk

Also see Section “lily-git” in Contributor’s Guide.

(B
Note: By default, when building LilyPond’s documentation, pdfTeX is

be used. However ligatures (fi, fl, ff etc.) may not be printed in the
PDF output. In this case XeTeX can be used instead. Download and
install the texlive-xetex package.

sudo apt-get install texlive-xetex

The scripts used to build the LilyPond documentation will use XeTex
instead of pdfTex to generate the PDF documents if it is available. No

additional configuration is required.
N J

OpenSUSE

The following instructions were tested on ‘OpenSUSE 13.2’ and will download all the software

required to both compile LilyPond and build the documentation.

e Add the sources repository;

sudo zypper addrepo -f \
"http://download.opensuse.org/source/distribution/13.2/repo/oss/" sources

Chapter 4: Compiling 47

e Download and install all the LilyPond build-dependencies (approximately 680MB);
sudo zypper source-install lilypond
e Download and install additional ‘build’ tools required for compiling;
sudo zypper install make
e Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.
sudo zypper install git
Also see Section “Starting with Git” in Contributor’s Guide.
e To use the 1ily-git.tcl GUI,;
sudo zypper install tk
Also see Section “lily-git” in Contributor’s Guide.

()
Note: By default, when building LilyPond’s documentation, pdfTeX is

be used. However ligatures (fi, fl, ff etc.) may not be printed in the
PDF output. In this case XeTeX can be used instead. Download and
install the texlive-xetex package.

sudo zypper install texlive-xetex

The scripts used to build the LilyPond documentation will use XeTex
instead of pdfTex to generate the PDF documents if it is available. No

additional configuration is required.
N J

Ubuntu
The following commands were tested on Ubuntu versions 14.04 LTS, 14.10 and 15.04 and will
download all the software required to both compile LilyPond and build the documentation.
e Download and install all the LilyPond build-dependencies (approximately 200MB);
sudo apt-get build-dep lilypond
e Download and install additional ‘build’ tools required for compiling;
sudo apt-get install autoconf fonts-texgyre texlive-lang-cyrillic
e Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.
sudo apt-get install git
Also see Section “Starting with Git” in Contributor’s Guide.
e To use the 1ily-git.tcl GUI,
sudo apt-get install tk
Also see Section “lily-git” in Contributor’s Guide.

(N
Note: By default, when building LilyPond’s documentation, pdfTeX is

be used. However ligatures (fi, fl, ff etc.) may not be printed in the
PDF output. In this case XeTeX can be used instead. Download and
install the texlive-xetex package.

sudo apt-get install texlive-xetex
The scripts used to build the LilyPond documentation will use XeTex

instead of pdfTex to generate the PDF documents if it is available. No

additional configuration is required.
N J

Chapter 4: Compiling 48

Other

The following individual software packages are required just to compile LilyPond.

GNU Autoconf (http://www.gnu.org/software/autoconf)
GNU Bison (http://www.gnu.org/software/bison/)

Use version 2.0 or newer.

GNU Compiler Collection (http://gcc.gnu.org/)

Use version 3.4 or newer (4.x recommended).

Flex (http://flex.sourceforge.net/)

FontForge (http://fontforge.sf.net/)

Use version 20060125 or newer (we recommend using at least 20100501); it must also be
compiled with the --enable-double switch, else this can lead to inaccurate intersection
calculations which end up with poorly-rendered glyphs in the output.

GNU gettext (http://www.gnu.org/software/gettext/gettext.html)
Use version 0.17 or newer.

GNU Make (http://www.gnu.org/software/make/)

Use version 3.78 or newer.

MetaFont (http://metafont.tutorial.free.fr/)

The mf-nowin, mf, mfw or mfont binaries are usually packaged along with TEX (http://
www.latex-project.org/ftp.html).

MetaPost (http://cm.bell-labs.com/who/hobby/MetaPost.html)

The mpost binary is also usually packaged with TEX (http://www.latex-project.org/
ftp.html).

Perl (http://www.perl.org/)

Texinfo (http://www.gnu.org/software/texinfo/)

Use version 4.11 or newer.

Type 1 utilities (http://www.lcdf.org/ eddietwo/type/#tlutils)
Use version 1.33 or newer.

Cyrillic fonts (https://www.ctan.org/pkg/cyrillic?lang=en)
Often packaged in repositories as texlive-lang-cyrillic.

TeX Gyre ‘OTF’ font packages. As of LilyPond version 2.19.26, the previous default
serif, san serif and monospace fonts now use Tex Gyre’s Schola, Heros and Cursor fonts
respectively. Also See Section “Fonts” in Notation Reference.

Some distributions do not always provide ‘OTF’ font files in the Tex Gyre packages from
their repositories. Use the command fc-1list | grep texgyre to list the fonts available to
your system and check that the appropriate *.otf files are reported. If they are not then
download and manually extract the ‘OTE’ files to either your local ~/.fonts/ directory or
use the configure command and the --with-texgyre-dir=/path_to_otf_files/ option.

The following font families are required:

Schola (http://www . gust . org.pl/projects/e-foundry/tex-gyre/schola), Heros
(http://www.gust.org.pl/projects/e-foundry/tex-gyre/heros) and Cursor (http://
www.gust.org.pl/projects/e-foundry/tex-gyre/cursor).

4.2.3 Requirements for building documentation

The entire set of documentation for the most current build of LilyPond is available online at
http://lilypond.org/doc/v2.19/Documentation/web/development, but you can also build
them locally from the source code. This process requires some additional tools and packages.

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/bison/
http://gcc.gnu.org/
http://flex.sourceforge.net/
http://fontforge.sf.net/
http://www.gnu.org/software/gettext/gettext.html
http://www.gnu.org/software/make/
http://metafont.tutorial.free.fr/
http://www.latex-project.org/ftp.html
http://www.latex-project.org/ftp.html
http://cm.bell-labs.com/who/hobby/MetaPost.html
http://www.latex-project.org/ftp.html
http://www.latex-project.org/ftp.html
http://www.perl.org/
http://www.gnu.org/software/texinfo/
http://www.lcdf.org/~eddietwo/type/#t1utils
https://www.ctan.org/pkg/cyrillic?lang=en
http://www.gust.org.pl/projects/e-foundry/tex-gyre/schola
http://www.gust.org.pl/projects/e-foundry/tex-gyre/heros
http://www.gust.org.pl/projects/e-foundry/tex-gyre/heros
http://www.gust.org.pl/projects/e-foundry/tex-gyre/cursor
http://www.gust.org.pl/projects/e-foundry/tex-gyre/cursor
http://lilypond.org/doc/v2.19/Documentation/web/development

Chapter 4: Compiling 49

Note: If the instructions for one of the previously listed Linux in the pre-
vious section (Section “Requirements for compiling LilyPond” in Con-
tributor’s Guide) have been used, then the following can be ignored as
the software should already be installed.

e Everything listed in Section 4.2.2 [Requirements for compiling LilyPond], page 45,
e ImageMagick (http://www.imagemagick.org/)
e Netpbm (http://netpbm.sourceforge.net/)
e gzip (http://gzip.org/)
e rsync (http://rsync.samba.org/)
e Texi2HTML (http://www.nongnu.org/texi2html/)
Use version 1.82. Later versions will not work.

Download texi2html 1.82 directly from: http://download . savannah . gnu . org/
releases/texi2html/texi2html-1.82.tar.gz;

Extract the files into an appropriate location and then run the commands;

./configure
make
sudo make install

Now verify that your operating system is able to see the correct version of texi2html.
texi2html --version
e Fonts required to build the documentation in addition to those required to run LilyPond:

gsfonts
fonts-linuxlibertine
fonts-liberation
fonts-dejavu
fonts-freefont-otf
ttf-bitstream-vera
texlive-fonts-recommended
ttf-xfree86-nonfree

()
Note: By default, when building LilyPond’s documentation, pdfTeX is
be used. However ligatures (fi, fl, ff etc.) may not be printed in the PDF
output. In this case XeTeX can be used instead. Download and install
the texlive-xetex package. The scripts used to build the LilyPond
documentation will use XeTex instead of pdfTex to generate the PDF

documents if it is available. No additional configuration is required.
N J

4.3 Getting the source code

Downloading the Git repository

In general, developers compile LilyPond from within a local Git repository. Setting up a local
Git repository is explained in Section “Starting with Git” in Contributor’s Guide.

Downloading a source tarball

Packagers are encouraged to use source tarballs for compiling.

The tarball for the latest stable release is available on the Section “Source” in General
Information page.
The latest source code snapshot (http://git.savannah.gnu.org/gitweb/ ?p=1lilypond .
git;a=snapshot) is also available as a tarball from the GNU Savannah Git server.

http://www.imagemagick.org/
http://netpbm.sourceforge.net/
http://gzip.org/
http://rsync.samba.org/
http://www.nongnu.org/texi2html/
http://download.savannah.gnu.org/releases/texi2html/texi2html-1.82.tar.gz
http://download.savannah.gnu.org/releases/texi2html/texi2html-1.82.tar.gz
http://git.savannah.gnu.org/gitweb/?p=lilypond.git;a=snapshot
http://git.savannah.gnu.org/gitweb/?p=lilypond.git;a=snapshot

Chapter 4: Compiling 50

All tagged releases (including legacy stable versions and the most recent development release)
are available here:

http://1lilypond.org/download/source/

Download the tarball to your ~/src/ directory, or some other appropriate place.

Note: Be careful where you unpack the tarballl Any subdirectories of
the current folder named 1ilypond/ or lilypond-x.y.z/ (where x.y.z
is the release number) will be overwritten if there is a name clash with
the tarball.

Unpack the tarball with this command:
tar -xzf lilypond-x.y.z.tar.gz

This creates a subdirectory within the current directory called 1ilypond-x.y.z/. Once
unpacked, the source files occupy about 40 MB of disk space.

Windows users wanting to look at the source code may have to download and install the
free-software 7zip archiver (http://www.7-zip.org) to extract the tarball.

4.4 Configuring make

4.4.1 Running ./autogen.sh

After you unpack the tarball (or download the Git repository), the contents of your top source
directory should be similar to the current source tree listed at http://git.sv.gnu.org/
gitweb/7p=lilypond.git;a=tree.
Next, you need to create the generated files; enter the following command from your top
source directory:
./autogen.sh --noconfigure

This will generate a number of files and directories to aid configuration, such as configure,
README. txt, etc.

Next, create the build directory with:

mkdir build/
cd build/

We heavily recommend building lilypond inside a separate directory with this method.

4.4.2 Running ../configure

Configuration options

Note: make sure that you are in the build/ subdirectory of your source
tree.

The ../configure command (generated by ./autogen.sh) provides many options for con-
figuring make. To see them all, run:

../configure --help

Checking build dependencies

Note: make sure that you are in the build/ subdirectory of your source
tree.

http://lilypond.org/download/source/
http://www.7-zip.org
http://git.sv.gnu.org/gitweb/?p=lilypond.git;a=tree
http://git.sv.gnu.org/gitweb/?p=lilypond.git;a=tree

Chapter 4: Compiling 51

When ../configure is run without any arguments, it will check to make sure your system
has everything required for compilation:

../configure
If any build dependency is missing, ../configure will return with:
ERROR: Please install required programs: foo

The following message is issued if you are missing programs that are only needed for building
the documentation:

WARNING: Please consider installing optional programs: bar

If you intend to build the documentation locally, you will need to install or update these
programs accordingly.

Note: ../configure may fail to issue warnings for certain documenta-
tion build requirements that are not met. If you experience problems
when building the documentation, you may need to do a manual check
of Section 4.2.3 [Requirements for building documentation], page 48.

Configuring target directories

Note: make sure that you are in the build/ subdirectory of your source
tree.

If you intend to use your local build to install a local copy of the program, you will probably
want to configure the installation directory. Here are the relevant lines taken from the output
of ../configure --help:

By default, ‘make install’ will install all the files in /usr/local/bin,
/usr/local/lib etc. You can specify an installation prefix other than /usr/local
using ‘--prefix’, for instance ‘~-prefix=$HOME’.

A typical installation prefix is $HOME/usr:
../configure --prefix=$HOME/usr

Note that if you plan to install a local build on a system where you do not have root priv-
ileges, you will need to do something like this anyway—make install will only succeed if the
installation prefix points to a directory where you have write permission (such as your home
directory). The installation directory will be automatically created if necessary.

The location of the 1ilypond command installed by this process will be
prefix/bin/lilypond; you may want to add prefix/bin/ to your $PATH if it is not
already included.

It is also possible to specify separate installation directories for different types of program
files. See the full output of ../configure --help for more information.

If you encounter any problems, please see Section 4.7 [Problems|, page 56.
4.5 Compiling LilyPond

4.5.1 Using make

Note: make sure that you are in the build/ subdirectory of your source
tree.

Chapter 4: Compiling 52

LilyPond is compiled with the make command. Assuming make is configured properly, you
can simply run:
make
‘make’ is short for ‘make all’. To view a list of make targets, run:
make help
TODO: Describe what make actually does.

See also

Section 4.6.2 [Generating documentation], page 53, provides more info on the make targets
used to build the LilyPond documentation.

4.5.2 Saving time with the -j option

If your system has multiple CPUs, you can speed up compilation by adding ‘-jX’ to the make
command, where ‘X’ is one more than the number of cores you have. For example, a typical
Core2Duo machine would use:

make -j3
If you get errors using the -j option, and ‘make’ succeeds without it, try lowering the X value.

Because multiple jobs run in parallel when -j is used, it can be difficult to determine the
source of an error when one occurs. In that case, running ‘make’ without the -j is advised.

4.5.3 Compiling for multiple platforms

If you want to build multiple versions of LilyPond with different configuration settings, you
can use the --enable-config=conf option of configure. You should use make conf=conf to
generate the output in out-conf. For example, suppose you want to build with and without
profiling, then use the following for the normal build

./configure --prefix=$HOME/usr/ --enable-checking
make

and for the profiling version, specify a different configuration

./configure --prefix=$HOME/usr/ --enable-profiling \
--enable-config=prof --disable-checking
make conf=prof

If you wish to install a copy of the build with profiling, don’t forget to use conf=CONF when
issuing make install:

make conf=prof install

See also
Section 4.6.1 [Installing LilyPond from a local build], page 52,

4.5.4 Useful make variables

If a less verbose build output if desired, the variable QUIET_BUILD may be set to 1 on make
command line, or in local .make at top of the build tree.

4.6 Post-compilation options

4.6.1 Installing LilyPond from a local build

If you configured make to install your local build in a directory where you normally have write
permission (such as your home directory), and you have compiled LilyPond by running make,
you can install the program in your target directory by running:

make install

Chapter 4: Compiling 53

If instead, your installation directory is not one that you can normally write to (such as
the default /usr/local/, which typically is only writeable by the superuser), you will need to
temporarily become the superuser when running make install:

sudo make install
or. ..
su -c¢ 'make install'

If you don’t have superuser privileges, then you need to configure the installation directory
to one that you can write to, and then re-install. See [Configuring target directories|, page 51.

4.6.2 Generating documentation

Documentation editor’s edit/compile cycle

e Initial documentation build:

make [-jX]
make [-jX CPU_COUNT=X] doc ## can take an hour or more
make [-jX CPU_COUNT=X] doc-stage-1 ## to build only PDF documentation

e Edit/compile cycle:

edit source files, then...

make [-jX] ## needed if editing outside
Documentation/, but useful anyway
for finding Texinfo errors.
make [-jX CPU_COUNT=X] doc ## usually faster than initial build.
e Reset:
It is generally possible to remove the compiled documentation from your system with
‘make doc-clean’, but this method is not 100% guaranteed. Instead, if you want to be
sure you have a clean system, we recommend that you delete your build/ directory, and
begin compiling from scratch. Since the documentation compile takes much longer than the
non-documentation compile, this does not increase the overall time by a great deal.

Building documentation

After a successful compile (using make), the documentation can be built by issuing:
make doc
or, to build only the PDF documentation and not the HTML,

make doc-stage-1

Note: The first time you run make doc, the process can easily take an
hour or more with not much output on the command line.

After this initial build, make doc only makes changes to the documentation where needed,
so it may only take a minute or two to test changes if the documentation is already built.

If make doc succeeds, the HTML documentation tree is available in
out-www/offline-root/, and can be browsed locally. Various portions of the docu-
mentation can be found by looking in out/ and out-www subdirectories in other places in
the source tree, but these are only portions of the docs. Please do not complain about
anything which is broken in those places; the only complete set of documentation is in
out-www/offline-root/ from the top of the source tree.

make doc sends the output from most of the compilation to logfiles. If the build fails for any
reason, it should prompt you with the name of a logfile which will provide information to help

Chapter 4: Compiling 54

you work out why the build failed. These logfiles are not deleted with make doc-clean. To
remove all the logfiles generated by the compilation process, use:

make log-clean
make doc compiles the documents for all languages. To save some compile time, the English
language documents can be compiled on their own with:
make LANGS='' doc
Similarly, it is possible to compile a subset of the translated documentation by specifying their

language codes on the command line. For example, the French and German translations are
compiled with:

make LANGS='de fr' doc
Note that this will also compile the English version.
Compilation of documentation in Info format with images can be done separately by issuing;:
make info

An issue when switching branches between master and translation is the appear-
ance/disappearance of translated versions of some manuals. If you see such a warning from
make:

No rule to make target “X', needed by "Y'
Your best bet is to delete the file Y.dep and to try again.

Building a single document

It’s possible to build a single document. For example, to rebuild only contributor.pdf, do the
following:

cd build/

cd Documentation/

touch ../../Documentation/contributor.texi
make out=www out-www/contributor.pdf

If you are only working on a single document, test-building it in this way can give substantial
time savings - recreating contributor.pdf, for example, takes a matter of seconds.

Saving time with CPU_COUNT

The most time consuming task for building the documentation is running LilyPond to build
images of music, and there cannot be several simultaneously running 1ilypond-book instances,
so the -j make option does not significantly speed up the build process. To help speed it up, the
makefile variable CPU_COUNT may be set in local.make or on the command line to the number
of .1y files that LilyPond should process simultaneously, e.g. on a bi-processor or dual core
machine:
make -j3 CPU_COUNT=3 doc

The recommended value of CPU_COUNT is one plus the number of cores or processors, but it is
advisable to set it to a smaller value unless your system has enough RAM to run that many
simultaneous LilyPond instances. Also, values for the -j option that pose problems with ‘make’
are less likely to pose problems with ‘make doc’ (this applies to both -j and CPU_COUNT). For
example, with a quad-core processor, it is possible for ‘make -j5 CPU_COUNT=5 doc’ to work
consistently even if ‘make -j5’ rarely succeeds.

AJAX search

To build the documentation with interactive searching, use:
make doc AJAX_SEARCH=1

Chapter 4: Compiling 55

This requires PHP, and you must view the docs via a http connection (you cannot view them
on your local filesystem).

Note: Due to potential security or load issues, this option is not enabled
in the official documentation builds. Enable at your own risk.

Installing documentation
The HTML, PDF and if available Info files can be installed into the standard documentation
path by issuing

make install-doc
This also installs Info documentation with images if the installation prefix is properly set; other-
wise, instructions to complete proper installation of Info documentation are printed on standard
output.

To install the Info documentation separately, run:

make install-info

Note that to get the images in Info documentation, install-doc target creates symbolic links

to HTML and PDF installed documentation tree in prefix/share/info, in order to save disk
space, whereas install-info copies images in prefix/share/info subdirectories.

It is possible to build a documentation tree in out-www/online-root/, with special process-
ing, so it can be used on a website with content negotiation for automatic language selection;
this can be achieved by issuing

make WEB_TARGETS=online doc
and both ‘offline’ and ‘online’ targets can be generated by issuing
make WEB_TARGETS="offline online" doc
Several targets are available to clean the documentation build and help with maintaining
documentation; an overview of these targets is available with
make help
from every directory in the build tree. Most targets for documentation maintenance are available

from Documentation/; for more information, see Section “Documentation work” in Contribu-
tor’s Guide.

The makefile variable QUIET_BUILD may be set to 1 for a less verbose build output, just like
for building the programs.

Building documentation without compiling

The documentation can be built locally without compiling LilyPond binary, if LilyPond is already
installed on your system.

From a fresh Git checkout, do

./autogen.sh # ignore any warning messages

cp GNUmakefile.in GNUmakefile

make -C scripts && make -C python

nice make LILYPOND_EXTERNAL_BINARY=/path/to/bin/lilypond doc

Please note that this may break sometimes — for example, if a new feature is added with a
test file in input/regression, even the latest development release of LilyPond will fail to build
the docs.

You may build the manual without building all the input/* stuff (i.e. mostly regression
tests): change directory, for example to Documentation/, issue make doc, which will build
documentation in a subdirectory out-www from the source files in current directory. In this case,

Chapter 4: Compiling 56

if you also want to browse the documentation in its post-processed form, change back to top
directory and issue

make out=www WWW-post

Known issues and warnings

You may also need to create a script for pngtopnm and pnmtopng. On GNU /Linux, I use this:

export LD_LIBRARY_PATH=/usr/lib
exec /usr/bin/pngtopnm "$Q"

On MacOS X with fink, I use this:
export DYLD_LIBRARY_PATH=/sw/lib
exec /sw/bin/pngtopnm "$e"
On MacOS X with macports, you should use this:

export DYLD_FALLBACK_LIBRARY_PATH=/opt/local/lib
exec /opt/local/bin/pngtopnm "$e"

4.6.3 Testing LilyPond binary
LilyPond comes with an extensive suite that exercises the entire program. This suite can be
used to test that the binary has been built correctly.
The test suite can be executed with:
make test
If the test suite completes successfully, the LilyPond binary has been verified.

More information on the regression test suite is found at Section “Regression tests” in Con-
tributor’s Guide.

4.7 Problems

For help and questions use 1lilypond-user@gnu.org. Send bug reports to
bug-lilypond@gnu.org.
Bugs that are not fault of LilyPond are documented here.

Compiling on MacOS X

Here are special instructions for compiling under MacOS X. These instructions assume that
dependencies are installed using MacPorts. (http://www.macports.org/) The instructions
have been tested using OS X 10.5 (Leopard).
First, install the relevant dependencies using MacPorts.
Next, add the following to your relevant shell initialization files. This is ~/.profile by
default. You should create this file if it does not exist.
export PATH=/opt/local/bin:/opt/local/sbin:$PATH
export DYLD_FALLBACK_LIBRARY_PATH=/opt/local/lib:$DYLD_FALLBACK_LIBRARY_PATH
Now you must edit the generated config.make file. Change
FLEXLEXER_FILE

/usr/include/FlexLexer.h
to:
FLEXLEXER_FILE = /opt/local/include/FlexLexer.h
At this point, you should verify that you have the appropriate fonts installed with your
ghostscript installation. Check 1s /opt/local/share/ghostscript/fonts for: ’'c0590* files
(.pfb, .pfb and .afm). If you don’t have them, run the following commands to grab them from
the ghostscript SVN server and install them in the appropriate location:

svn export http://svn.ghostscript.com/ghostscript/tags/urw-fonts-1.0.7pre44/

mailto:lilypond-user@gnu.org
mailto:bug-lilypond@gnu.org
http://www.macports.org/

Chapter 4: Compiling 57

sudo mv urw-fonts-1.0.7pred44/* /opt/local/share/ghostscript/fonts/
rm -rf urw-fonts-1.07pred4

Now run the ./configure script. To avoid complications with automatic font detection, add

--with-fonts-dir=/opt/local/share/ghostscript/fonts

Solaris
Solaris7, ./configure

./configure needs a POSIX compliant shell. On Solaris7, /bin/sh is not yet POSIX com-
pliant, but