PARI Groups¶
See pari:polgalois for the PARI documentation of these objects.
-
class
sage.groups.pari_group.
PariGroup
(x, degree)¶ Bases:
object
EXAMPLES:
sage: PariGroup([6, -1, 2, "S3"], 3) PARI group [6, -1, 2, S3] of degree 3 sage: R.<x> = PolynomialRing(QQ) sage: f = x^4 - 17*x^3 - 2*x + 1 sage: G = f.galois_group(pari_group=True); G PARI group [24, -1, 5, "S4"] of degree 4
-
cardinality
()¶ Return the order of
self
.EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: f1 = x^4 - 17*x^3 - 2*x + 1 sage: G1 = f1.galois_group(pari_group=True) sage: G1.order() 24
-
degree
()¶ Return the degree of
self
.EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: f1 = x^4 - 17*x^3 - 2*x + 1 sage: G1 = f1.galois_group(pari_group=True) sage: G1.degree() 4
-
order
()¶ Return the order of
self
.EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: f1 = x^4 - 17*x^3 - 2*x + 1 sage: G1 = f1.galois_group(pari_group=True) sage: G1.order() 24
-
permutation_group
()¶
-