Go to the source code of this file.
◆ plain_spoly()
poly plain_spoly |
( |
poly |
f, |
|
|
poly |
g |
|
) |
| |
Definition at line 168 of file ringgb.cc.
KINLINE BOOLEAN k_GetLeadTerms(const poly p1, const poly p2, const ring p_r, poly &m1, poly &m2, const ring m_r)
int ksCheckCoeff(number *a, number *b)
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
◆ reduce_poly_fct()
poly reduce_poly_fct |
( |
poly |
p, |
|
|
ring |
r |
|
) |
| |
Definition at line 29 of file ringgb.cc.
poly kFindZeroPoly(poly input_p, ring leadRing, ring tailRing)
◆ ringNF()
poly ringNF |
( |
poly |
f, |
|
|
ideal |
G, |
|
|
ring |
r |
|
) |
| |
Definition at line 199 of file ringgb.cc.
207 while (h !=
NULL && i >= 0) {
int findRingSolver(poly rside, ideal G, ring r)
poly plain_spoly(poly f, poly g)
#define pCopy(p)
return a copy of the poly
◆ ringRedNF()
poly ringRedNF |
( |
poly |
f, |
|
|
ideal |
G, |
|
|
ring |
r |
|
) |
| |
Definition at line 117 of file ringgb.cc.
126 Print(
"%d-step RedNF - g=", c);
#define pLmDelete(p)
assume p != NULL, deletes Lm(p)->coef and Lm(p)
void PrintS(const char *s)
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL ...
poly ringNF(poly f, ideal G, ring r)
#define pCopy(p)
return a copy of the poly
◆ testGB()
int testGB |
( |
ideal |
I, |
|
|
ideal |
GI |
|
) |
| |
Definition at line 226 of file ringgb.cc.
231 for (i = 0; i <
IDELEMS(I); i++) {
233 PrintS(
"Not reduced to zero from I: ");
242 PrintS(
" Yes!\nspoly --> 0?");
243 for (i = 0; i <
IDELEMS(GI); i++)
245 for (j = i + 1; j <
IDELEMS(GI); j++)
273 PrintS(
" Yes!\nzero-spoly --> 0?");
274 for (i = 0; i <
IDELEMS(GI); i++)
static BOOLEAN rField_is_Domain(const ring r)
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
void PrintS(const char *s)
poly plain_spoly(poly f, poly g)
poly plain_zero_spoly(poly h)
poly ringNF(poly f, ideal G, ring r)
#define pCopy(p)
return a copy of the poly