254 int flag, flagcnt=0, syzcnt=0;
260 ideal trickyQuotient;
268 poly *var = (poly *)
omAlloc0((N+1)*
sizeof(poly));
275 ideal h2, s_h2, s_h3;
278 for (i=1; i<=
N; i++ )
286 for (i=1; i<=
N; i++ )
290 for (j=0; j< idI; j++ )
317 if (orig_ring != syz_ring)
333 Print(
".proceeding with the variable %d\n",i);
342 PrintS(
"...computing Syz");
346 if (orig_ring != syz_ring)
349 for (j=0; j<
IDELEMS(s_h3); j++)
351 if (s_h3->m[j] !=
NULL)
353 if (
p_MinComp(s_h3->m[j],syz_ring) > syzcomp)
360 s_h3->rank -= syzcomp;
378 PrintS(
"the input is a two--sided ideal");
383 Print(
"..computing Intersect of %d modules\n",syzcnt);
391 for (i=1; i<=
MATCOLS(MI); i++)
394 for (j=0; j<
idElem(I); j++)
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
ideal idMultSect(resolvente arg, int length, GbVariant alg)
#define idDelete(H)
delete an ideal
#define idSimpleAdd(A, B)
static poly pp_Mult_mm(poly p, poly m, const ring r)
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
const CanonicalForm CFMap CFMap & N
ring rAssure_SyzComp(const ring r, BOOLEAN complete)
static ideal idPrepareStd(ideal T, ideal s, int k)
void PrintS(const char *s)
static long p_MinComp(poly p, ring lmRing, ring tailRing)
matrix id_Module2Matrix(ideal mod, const ring R)
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
void rSetSyzComp(int k, const ring r)
void rChangeCurrRing(ring r)
void p_Shift(poly *p, int i, const ring r)
shifts components of the vector p by i
ideal idInit(int idsize, int rank)
initialise an ideal / module
void rDelete(ring r)
unconditionally deletes fields in r
int idElem(const ideal F)
count non-zero elements
#define SI_RESTORE_OPT1(A)
ideal idrCopyR_NoSort(ideal id, ring src_r, ring dest_r)
ideal idrMoveR_NoSort(ideal &id, ring src_r, ring dest_r)
#define pCopy(p)
return a copy of the poly
#define MATELEM(mat, i, j)
1-based access to matrix