38 namespace Test {
namespace Set {
59 template<
class I,
class J>
61 sol(I&
i, J& j)
const {
85 :
SetTest(
"RelOp::"+str(sot0)+
"::"+str(srt0)+
"::S"+str(share0),
86 share0 == 0 ? 3 : 2,ds_22,false)
87 , sot(sot0), srt(srt0), share(share0) {}
92 case 0: a=x[0];
b=x[1];
c=x[2];
break;
93 case 1: a=x[0];
b=x[0];
c=x[0];
break;
94 case 2: a=x[0];
b=x[0];
c=x[1];
break;
95 case 3: a=x[0];
b=x[1];
c=x[0];
break;
96 case 4: a=x[0];
b=x[1];
c=x[1];
break;
142 case 0: a=x[0]; b=x[1]; c=x[2];
break;
143 case 1: a=x[0]; b=x[0]; c=x[0];
break;
144 case 2: a=x[0]; b=x[0]; c=x[1];
break;
145 case 3: a=x[0]; b=x[1]; c=x[0];
break;
146 case 4: a=x[0]; b=x[1]; c=x[1];
break;
160 for (
int i=0;
i<=4;
i++) {
161 (void)
new Rel(sots.sot(),srts.srt(),
i);
181 :
SetTest(
"RelOp::N::"+str(sot0)+
"::"+str(n0)+
"::S"+str(shared0)+
182 "::C"+str(withConst0 ? 1 : 0),
183 shared0 == 0 ? n0+1 : (shared0 <= 2 ? 3 : 2),ds_12,false)
184 , sot(sot0), n(n0), shared(shared0), withConst(withConst0)
189 int realN = shared == 0 ?
n : 3;
195 for (
int i=realN;
i--; )
196 isrs[
i].init(x.
lub, x[
i]);
217 int result = shared == 0 ? x.
size() - 1 : (shared <= 2 ? 2 : 0);
223 if (shared == 1 && (isrs[0]() || isrs[1]())) {
224 delete[] isrs;
return false;
226 if (shared == 3 && (isrs[0]() || isrs[2]())) {
227 delete[] isrs;
return false;
229 unsigned int cardSum = 0;
230 if (shared == 1 || shared == 3) {
234 for (
int i=0;
i<realN;
i++) {
243 delete[] isrs;
return false;
306 int size = shared == 0 ? x.
size()-1 : 3;
311 for (
int i=x.
size()-1;
i--;)
316 xs[0] = x[0]; xs[1] = x[0]; xs[2] = x[1]; xn = x[2];
319 xs[0] = x[0]; xs[1] = x[1]; xs[2] = x[2]; xn = x[2];
322 xs[0] = x[0]; xs[1] = x[1]; xs[2] = x[0]; xn = x[0];
340 for (
int wc=0; wc<=1; wc++) {
341 for (
int i=0;
i<=3;
i++) {
368 :
SetTest(
"RelOp::IntN::"+str(sot0)+
"::"+str(n0)+
369 "::C"+str(withConst0 ? 1 : 0),
371 , sot(sot0), n(n0), withConst(withConst0)
376 int* isrs =
new int[
n];
377 for (
int i=0;
i<
n;
i++)
388 if (cardSum != static_cast<unsigned int>(n)) {
419 bool allEqual =
true;
420 for (
int i=1;
i<
n;
i++) {
421 if (isrs[
i] != isrs[0]) {
480 for (
int wc=0; wc<=1; wc++) {
481 for (
int i=0;
i<=3;
i++) {
Test for n-ary partition constraint
Create(void)
Perform creation and registration.
Iterator for Boolean operation types.
SetRelType
Common relation types for sets.
Iterator for set relation types.
void post(Space &home, SetVarArray &x, IntVarArray &)
Post constraint on x.
Range iterator for singleton range.
Range iterator for integer sets.
void post(Space &home, SetVarArray &x, IntVarArray &y)
Post constraint on x.
int size(void) const
Return size of array (number of elements)
CreateIntN(void)
Perform creation and registration.
bool solution(const SetAssignment &x) const
Test whether x is solution
bool equal(I &i, J &j)
Check whether range iterators i and j are equal.
Test for ternary relation constraint
SetOpType
Common operations for sets.
const unsigned int card
Maximum cardinality of an integer set.
Test for n-ary partition constraint
void init(const Gecode::IntSet &d, int cur)
Initialize with set d0 and bit-pattern cur0.
Test for Region memory area
CreateN(void)
Perform creation and registration.
void post(Space &home, SetVarArray &x, IntVarArray &)
Post constraint on x.
Help class to create and register tests.
Gecode::IntArgs i(4, 1, 2, 3, 4)
int n
Number of negative literals for node type.
Range iterator for computing intersection (binary)
Range iterator for union of iterators.
A complement iterator spezialized for the BndSet limits.
unsigned int size(I &i)
Size of all ranges of range iterator i.
bool solution(const SetAssignment &x) const
Test whether x is solution
Gecode::IntSet lub
The common superset for all domains.
RelIntN(Gecode::SetOpType sot0, int n0, bool withConst0)
Create and register test.
union Gecode::@585::NNF::@62 u
Union depending on nodetype t.
const Test::Int::Assignment & ints(void) const
Return assignment for integer variables.
Range iterator for computing union (binary)
Post propagator for SetVar SetOpType SetVar SetRelType r
SetExpr inter(const SetVarArgs &x)
Intersection of set variables.
struct Gecode::@585::NNF::@62::@63 b
For binary nodes (and, or, eqv)
Rel(Gecode::SetOpType sot0, Gecode::SetRelType srt0, int share0=0)
Create and register test.
Post propagator for SetVar SetOpType SetVar y
Help class to create and register tests.
struct Gecode::@585::NNF::@62::@64 a
For atomic nodes.
Range iterator for intersection of iterators.
bool solution(const SetAssignment &x) const
Test whether x is solution
Base class for tests with set constraints
Generate all set assignments.
void rel(Home home, FloatVar x0, FloatRelType frt, FloatVal n)
Propagates .
Range iterator producing subsets of an IntSet.
Post propagator for SetVar x
bool subset(I &i, J &j)
Check whether range iterator i is subset of range iterator j.
bool shared(const ConstView< ViewA > &, const ConstView< ViewB > &)
Test whether views share same variable.
RelN(Gecode::SetOpType sot0, int n0, int shared0, bool withConst0)
Create and register test.
Gecode toplevel namespace
int size(void) const
Return arity.
Range iterator for computing set difference.
#define GECODE_NEVER
Assert that this command is never executed.
Help class to create and register tests.